How Sparse Can We Prune A Deep Network: A Fundamental Limit Viewpoint
- URL: http://arxiv.org/abs/2306.05857v4
- Date: Sun, 15 Jun 2025 16:57:09 GMT
- Title: How Sparse Can We Prune A Deep Network: A Fundamental Limit Viewpoint
- Authors: Qiaozhe Zhang, Ruijie Zhang, Jun Sun, Yingzhuang Liu,
- Abstract summary: Network pruning is a commonly used measure to alleviate the storage and computational burden of deep neural networks.<n>This work takes a first-principles approach, i.e. we'll impose the sparsity constraint on the loss function and leverage the framework of statistical dimension in convex geometry.<n>We identify two key factors that determine the pruning ratio limit, namely, weight magnitude and network sharpness.
- Score: 3.4396642896512977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network pruning is a commonly used measure to alleviate the storage and computational burden of deep neural networks. However, the fundamental limit of network pruning is still lacking. To close the gap, in this work we'll take a first-principles approach, i.e. we'll directly impose the sparsity constraint on the loss function and leverage the framework of statistical dimension in convex geometry, thus enabling us to characterize the sharp phase transition point, which can be regarded as the fundamental limit of the pruning ratio. Through this limit, we're able to identify two key factors that determine the pruning ratio limit, namely, weight magnitude and network sharpness. Generally speaking, the flatter the loss landscape or the smaller the weight magnitude, the smaller pruning ratio. Moreover, we provide efficient countermeasures to address the challenges in the computation of the pruning limit, which mainly involves the accurate spectrum estimation of a large-scale and non-positive Hessian matrix. Moreover, through the lens of the pruning ratio threshold, we can also provide rigorous interpretations on several heuristics in existing pruning algorithms. Extensive experiments are performed which demonstrate that our theoretical pruning ratio threshold coincides very well with the experiments. All codes are available at: https://github.com/QiaozheZhang/Global-One-shot-Pruning
Related papers
- Covering Numbers for Deep ReLU Networks with Applications to Function Approximation and Nonparametric Regression [4.297070083645049]
We develop tight (up to a multiplicative constant) lower and upper bounds on the covering numbers of fully-connected networks.
Thanks to the tightness of the bounds, a fundamental understanding of the impact of sparsity, quantization, bounded vs. unbounded weights, and network output truncation can be developed.
arXiv Detail & Related papers (2024-10-08T21:23:14Z) - Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
We propose an algorithm capable of identifying and eliminating irrelevant layers of a neural network during the early stages of training.
We employ a structure using residual connections around nonlinear network sections that allow the flow of information through the network once a nonlinear section is pruned.
arXiv Detail & Related papers (2024-06-06T23:19:57Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - The Unreasonable Effectiveness of Random Pruning: Return of the Most
Naive Baseline for Sparse Training [111.15069968583042]
Random pruning is arguably the most naive way to attain sparsity in neural networks, but has been deemed uncompetitive by either post-training pruning or sparse training.
We empirically demonstrate that sparsely training a randomly pruned network from scratch can match the performance of its dense equivalent.
Our results strongly suggest there is larger-than-expected room for sparse training at scale, and the benefits of sparsity might be more universal beyond carefully designed pruning.
arXiv Detail & Related papers (2022-02-05T21:19:41Z) - The Future is Log-Gaussian: ResNets and Their Infinite-Depth-and-Width
Limit at Initialization [18.613475245655806]
We study ReLU ResNets in the infinite-depth-and-width limit, where both depth and width tend to infinity as their ratio, $d/n$, remains constant.
Using Monte Carlo simulations, we demonstrate that even basic properties of standard ResNet architectures are poorly captured by the Gaussian limit.
arXiv Detail & Related papers (2021-06-07T23:47:37Z) - BN-invariant sharpness regularizes the training model to better
generalization [72.97766238317081]
We propose a measure of sharpness, BN-Sharpness, which gives consistent value for equivalent networks under BN.
We use the BN-sharpness to regularize the training and design an algorithm to minimize the new regularized objective.
arXiv Detail & Related papers (2021-01-08T10:23:24Z) - Neural Pruning via Growing Regularization [82.9322109208353]
We extend regularization to tackle two central problems of pruning: pruning schedule and weight importance scoring.
Specifically, we propose an L2 regularization variant with rising penalty factors and show it can bring significant accuracy gains.
The proposed algorithms are easy to implement and scalable to large datasets and networks in both structured and unstructured pruning.
arXiv Detail & Related papers (2020-12-16T20:16:28Z) - On the Predictability of Pruning Across Scales [29.94870276983399]
We show that the error of magnitude-pruned networks empirically follows a scaling law with interpretable coefficients that depend on the architecture and task.
As neural networks become ever larger and costlier to train, our findings suggest a framework for reasoning conceptually and analytically about a standard method for unstructured pruning.
arXiv Detail & Related papers (2020-06-18T15:41:46Z) - Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning [83.99191569112682]
Magnitude-based pruning is one of the simplest methods for pruning neural networks.
We develop a simple pruning method, coined lookahead pruning, by extending the single layer optimization to a multi-layer optimization.
Our experimental results demonstrate that the proposed method consistently outperforms magnitude-based pruning on various networks.
arXiv Detail & Related papers (2020-02-12T05:38:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.