Covering Numbers for Deep ReLU Networks with Applications to Function Approximation and Nonparametric Regression
- URL: http://arxiv.org/abs/2410.06378v1
- Date: Tue, 8 Oct 2024 21:23:14 GMT
- Title: Covering Numbers for Deep ReLU Networks with Applications to Function Approximation and Nonparametric Regression
- Authors: Weigutian Ou, Helmut Bölcskei,
- Abstract summary: We develop tight (up to a multiplicative constant) lower and upper bounds on the covering numbers of fully-connected networks.
Thanks to the tightness of the bounds, a fundamental understanding of the impact of sparsity, quantization, bounded vs. unbounded weights, and network output truncation can be developed.
- Score: 4.297070083645049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Covering numbers of families of (deep) ReLU networks have been used to characterize their approximation-theoretic performance, upper-bound the prediction error they incur in nonparametric regression, and quantify their classification capacity. These results are based on covering number upper bounds obtained through the explicit construction of coverings. Lower bounds on covering numbers do not seem to be available in the literature. The present paper fills this gap by deriving tight (up to a multiplicative constant) lower and upper bounds on the covering numbers of fully-connected networks with bounded weights, sparse networks with bounded weights, and fully-connected networks with quantized weights. Thanks to the tightness of the bounds, a fundamental understanding of the impact of sparsity, quantization, bounded vs. unbounded weights, and network output truncation can be developed. Furthermore, the bounds allow to characterize the fundamental limits of neural network transformation, including network compression, and lead to sharp upper bounds on the prediction error in nonparametric regression through deep networks. Specifically, we can remove a $\log^6(n)$-factor in the best-known sample complexity rate in the estimation of Lipschitz functions through deep networks thereby establishing optimality. Finally, we identify a systematic relation between optimal nonparametric regression and optimal approximation through deep networks, unifying numerous results in the literature and uncovering general underlying principles.
Related papers
- Three Quantization Regimes for ReLU Networks [3.823356975862005]
We establish the fundamental limits in the approximation of Lipschitz functions by deep ReLU neural networks with finite-precision weights.
In the proper-quantization regime, neural networks exhibit memory-optimality in the approximation of Lipschitz functions.
arXiv Detail & Related papers (2024-05-03T09:27:31Z) - Asymptotics of Learning with Deep Structured (Random) Features [9.366617422860543]
For a large class of feature maps we provide a tight characterisation of the test error associated with learning the readout layer.
In some cases our results can capture feature maps learned by deep, finite-width neural networks trained under gradient descent.
arXiv Detail & Related papers (2024-02-21T18:35:27Z) - Wide Deep Neural Networks with Gaussian Weights are Very Close to
Gaussian Processes [1.0878040851638]
We show that the distance between the network output and the corresponding Gaussian approximation scales inversely with the width of the network, exhibiting faster convergence than the naive suggested by the central limit theorem.
We also apply our bounds to obtain theoretical approximations for the exact posterior distribution of the network, when the likelihood is a bounded Lipschitz function of the network output evaluated on a (finite) training set.
arXiv Detail & Related papers (2023-12-18T22:29:40Z) - Optimization dependent generalization bound for ReLU networks based on
sensitivity in the tangent bundle [0.0]
We propose a PAC type bound on the generalization error of feedforward ReLU networks.
The obtained bound does not explicitly depend on the depth of the network.
arXiv Detail & Related papers (2023-10-26T13:14:13Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Bayesian Interpolation with Deep Linear Networks [92.1721532941863]
Characterizing how neural network depth, width, and dataset size jointly impact model quality is a central problem in deep learning theory.
We show that linear networks make provably optimal predictions at infinite depth.
We also show that with data-agnostic priors, Bayesian model evidence in wide linear networks is maximized at infinite depth.
arXiv Detail & Related papers (2022-12-29T20:57:46Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Critical Initialization of Wide and Deep Neural Networks through Partial
Jacobians: General Theory and Applications [6.579523168465526]
We introduce emphpartial Jacobians of a network, defined as derivatives of preactivations in layer $l$ with respect to preactivations in layer $l_0leq l$.
We derive recurrence relations for the norms of partial Jacobians and utilize these relations to analyze criticality of deep fully connected neural networks with LayerNorm and/or residual connections.
arXiv Detail & Related papers (2021-11-23T20:31:42Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [65.24701908364383]
We show that a sufficient condition for a uncertainty on a ReLU network is "to be a bit Bayesian calibrated"
We further validate these findings empirically via various standard experiments using common deep ReLU networks and Laplace approximations.
arXiv Detail & Related papers (2020-02-24T08:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.