C(NN)FD -- a deep learning framework for turbomachinery CFD analysis
- URL: http://arxiv.org/abs/2306.05889v2
- Date: Fri, 17 May 2024 14:21:22 GMT
- Title: C(NN)FD -- a deep learning framework for turbomachinery CFD analysis
- Authors: Giuseppe Bruni, Sepehr Maleki, Senthil K. Krishnababu,
- Abstract summary: This paper demonstrates the development of a novel deep learning framework for real-time predictions of the impact of manufacturing and build variations on the overall performance of axial compressors in gas turbines.
The associated scatter in efficiency can significantly increase the CO2 emissions, thus being of great industrial and environmental relevance.
The proposed C(NN)FD architecture achieves in real-time accuracy comparable to the CFD benchmark.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning methods have seen a wide range of successful applications across different industries. Up until now, applications to physical simulations such as CFD (Computational Fluid Dynamics), have been limited to simple test-cases of minor industrial relevance. This paper demonstrates the development of a novel deep learning framework for real-time predictions of the impact of manufacturing and build variations on the overall performance of axial compressors in gas turbines, with a focus on tip clearance variations. The associated scatter in efficiency can significantly increase the CO2 emissions, thus being of great industrial and environmental relevance. The proposed C(NN)FD architecture achieves in real-time accuracy comparable to the CFD benchmark. Predicting the flow field and using it to calculate the corresponding overall performance renders the methodology generalisable, while filtering only relevant parts of the CFD solution makes the methodology scalable to industrial applications.
Related papers
- Using Parametric PINNs for Predicting Internal and External Turbulent Flows [6.387263468033964]
We build upon the previously proposed RANS-PINN framework, which only focused on predicting flow over a cylinder.
We investigate its accuracy in predicting relevant turbulent flow variables for both internal and external flows.
arXiv Detail & Related papers (2024-10-24T17:08:20Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.
We take the first step to unify all approaches by dissecting them from a decomposition perspective.
We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - Deep learning modelling of manufacturing and build variations on multi-stage axial compressors aerodynamics [0.0]
This paper demonstrates the development and application of a deep learning framework for predictions of the flow field and aerodynamic performance of multi-stage axial compressors.
A physics-based dimensionality reduction unlocks the potential for flow-field predictions.
The proposed architecture is proven to achieve an accuracy comparable to that of the CFD benchmark, in real-time, for an industrially relevant application.
arXiv Detail & Related papers (2023-10-06T14:11:21Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics
in Industrial Metaverse [49.1501082763252]
This paper presents HFEDMS for incorporating practical FL into the emerging Industrial Metaverse.
It reduces data heterogeneity through dynamic grouping and training mode conversion.
Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics.
Experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices.
arXiv Detail & Related papers (2022-11-07T04:33:24Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Using Gradient to Boost the Generalization Performance of Deep Learning
Models for Fluid Dynamics [0.0]
We present a novel work to increase the generalization capabilities of Deep Learning.
Our strategy has shown good results towards a better generalization of DL networks.
arXiv Detail & Related papers (2022-10-09T10:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.