C(NN)FD -- Deep Learning Modelling of Multi-Stage Axial Compressors Aerodynamics
- URL: http://arxiv.org/abs/2503.14369v1
- Date: Tue, 18 Mar 2025 15:58:58 GMT
- Title: C(NN)FD -- Deep Learning Modelling of Multi-Stage Axial Compressors Aerodynamics
- Authors: Giuseppe Bruni, Sepehr Maleki, Senthil K Krishnababu,
- Abstract summary: This paper demonstrates the development and application of a generalized deep learning framework for predictions of the flow field and aerodynamic performance of multi-stage axial compressors.<n>A physics-based dimensionality reduction unlocks the potential for flow-field predictions for large-scale domains, re-formulating the regression problem from an unstructured to a structured one.<n>The proposed framework has the advantage of physically explainable predictions of overall performance, as the corresponding aerodynamic drivers can be identified on a 0D/1D/2D/3D level.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of scientific machine learning and its applications to numerical analyses such as CFD has recently experienced a surge in interest. While its viability has been demonstrated in different domains, it has not yet reached a level of robustness and scalability to make it practical for industrial applications in the turbomachinery field. The highly complex, turbulent, and three-dimensional flows of multi-stage axial compressors for gas turbine applications represent a remarkably challenging case. This is due to the high-dimensionality of the regression of the flow-field from geometrical and operational variables, and the high computational cost associated with the large scale of the CFD domains. This paper demonstrates the development and application of a generalized deep learning framework for predictions of the flow field and aerodynamic performance of multi-stage axial compressors, also potentially applicable to any type of turbomachinery. A physics-based dimensionality reduction unlocks the potential for flow-field predictions for large-scale domains, re-formulating the regression problem from an unstructured to a structured one. The relevant physical equations are used to define a multi-dimensional physical loss function. Compared to "black-box" approaches, the proposed framework has the advantage of physically explainable predictions of overall performance, as the corresponding aerodynamic drivers can be identified on a 0D/1D/2D/3D level. An iterative architecture is employed, improving the accuracy of the predictions, as well as estimating the associated uncertainty. The model is trained on a series of dataset including manufacturing and build variations, different geometries, compressor designs and operating conditions. This demonstrates the capability to predict the flow-field and the overall performance in a generalizable manner, with accuracy comparable to the benchmark.
Related papers
- Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction [52.32698071488864]
We propose Factorized Implicit Global Convolution (FIGConv), a novel architecture that efficiently solves CFD problems for very large 3D meshes.<n>FIGConv achieves quadratic complexity $O(N2)$, a significant improvement over existing 3D neural CFD models.<n>We validate our approach on the industry-standard Ahmed body dataset and the large-scale DrivAerNet dataset.
arXiv Detail & Related papers (2025-02-06T18:57:57Z) - Physically Interpretable Representation and Controlled Generation for Turbulence Data [39.42376941186934]
This paper proposes a data-driven approach to encode high-dimensional scientific data into low-dimensional, physically meaningful representations.
We validate our approach using 2D Navier-Stokes simulations of flow past a cylinder over a range of Reynolds numbers.
arXiv Detail & Related papers (2025-01-31T17:51:14Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Deep learning modelling of manufacturing and build variations on multi-stage axial compressors aerodynamics [0.0]
This paper demonstrates the development and application of a deep learning framework for predictions of the flow field and aerodynamic performance of multistage axial compressors.<n>A physics-based dimensionality reduction approach unlocks the potential for flow-field predictions.<n>The proposed architecture is proven to achieve an accuracy comparable to that of the CFD benchmark, in real-time, for an industrially relevant application.
arXiv Detail & Related papers (2023-10-06T14:11:21Z) - C(NN)FD -- a deep learning framework for turbomachinery CFD analysis [0.0]
This paper demonstrates the development of a novel deep learning framework for real-time predictions of the impact of manufacturing and build variations on the overall performance of axial compressors in gas turbines.
The associated scatter in efficiency can significantly increase the CO2 emissions, thus being of great industrial and environmental relevance.
The proposed C(NN)FD architecture achieves in real-time accuracy comparable to the CFD benchmark.
arXiv Detail & Related papers (2023-06-09T13:35:04Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Knowledge-embedded meta-learning model for lift coefficient prediction
of airfoils [25.546237636065182]
A knowledge-embedded meta learning model is developed to obtain the lift coefficients of an arbitrary supercritical airfoil under various angle of attacks.
Compared to the ordinary neural network, our proposed model can exhibit better generalization capability with competitive prediction accuracy.
Results show that the proposed model can tend to assess the influence of airfoil geometry to the physical characteristics.
arXiv Detail & Related papers (2023-03-06T02:47:31Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural
Network [0.0]
Figuring out the right airfoil is a crucial step in the preliminary stage of any aerial vehicle design.
This study compares different network architectures and training datasets in an attempt to gain insight as to how the network perceives the given airfoil geometries.
arXiv Detail & Related papers (2021-09-24T19:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.