論文の概要: A Dynamical Graph Prior for Relational Inference
- arxiv url: http://arxiv.org/abs/2306.06041v1
- Date: Fri, 9 Jun 2023 17:07:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-12 12:22:17.771297
- Title: A Dynamical Graph Prior for Relational Inference
- Title(参考訳): 関係推論のための動的グラフ
- Authors: Liming Pan, Cheng Shi, Ivan Dokmani\'c
- Abstract要約: 推論のためのテキスト力学的グラフ先行 (DYGR) を提案する。
実験により、DYGRは従来の方法よりもはるかに正確にグラフを再構成し、アンダーサンプリングに対する顕著な堅牢性を示した。
- 参考スコア(独自算出の注目度): 31.04049961636482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relational inference aims to identify interactions between parts of a
dynamical system from the observed dynamics. Current state-of-the-art methods
fit a graph neural network (GNN) on a learnable graph to the dynamics. They use
one-step message-passing GNNs -- intuitively the right choice since
non-locality of multi-step or spectral GNNs may confuse direct and indirect
interactions. But the \textit{effective} interaction graph depends on the
sampling rate and it is rarely localized to direct neighbors, leading to local
minima for the one-step model. In this work, we propose a \textit{dynamical
graph prior} (DYGR) for relational inference. The reason we call it a prior is
that, contrary to established practice, it constructively uses error
amplification in high-degree non-local polynomial filters to generate good
gradients for graph learning. To deal with non-uniqueness, DYGR simultaneously
fits a ``shallow'' one-step model with shared graph topology. Experiments show
that DYGR reconstructs graphs far more accurately than earlier methods, with
remarkable robustness to under-sampling. Since appropriate sampling rates for
unknown dynamical systems are not known a priori, this robustness makes DYGR
suitable for real applications in scientific machine learning.
- Abstract(参考訳): 関係推論は、観測されたダイナミクスから力学系の一部間の相互作用を識別することを目的としている。
現在の最先端手法は、学習可能なグラフ上のグラフニューラルネットワーク(gnn)をダイナミクスに適合させる。
マルチステップやスペクトルGNNの非局所性が直接的および間接的相互作用を混乱させる可能性があるため、直感的には正しい選択である。
しかし、‘textit{ Effective} 相互作用グラフはサンプリング率に依存し、直接隣人に局所化されることは滅多になく、ワンステップモデルの局所ミニマとなる。
本研究では,関係推論のための\textit{dynamical graph prior} (dygr)を提案する。
従来の手法とは対照的に、高次非局所多項式フィルタのエラー増幅を使って、グラフ学習に適切な勾配を生成するからです。
非特異性を扱うために、DYGR は共有グラフトポロジを持つ ``shallow'' ワンステップモデルに同時に適合する。
実験により、DYGRは従来の方法よりもはるかに正確にグラフを再構成し、アンダーサンプリングに対する顕著な堅牢性を示した。
未知の力学系に対する適切なサンプリングレートは事前に分かっていないため、この堅牢性はDYGRを科学機械学習における真の応用に適している。
関連論文リスト
- Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - PGODE: Towards High-quality System Dynamics Modeling [40.76121531452706]
本稿では,エージェントが相互に相互作用して動作に影響を与えるマルチエージェント力学系をモデル化する問題について検討する。
最近の研究では、主に幾何学グラフを用いてこれらの相互相互作用を表現し、グラフニューラルネットワーク(GNN)によって捉えられている。
本稿では,プロトタイプグラフODE(Prototypeal Graph ODE)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-11T12:04:47Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Neural Graph Revealers [2.2721854258621064]
確率的グラフモデルとスパースグラフリカバリ手法を効率的にマージするために,NGR(Neural Graph Revealers)を提案する。
NGRはニューラルネットワークを「ガラス箱」、より具体的にはマルチタスク学習フレームワークとみなしている。
ガウス図形モデルとCenters for Disease Control and Preventionによるマルチモーダル乳幼児死亡データから,スパースグラフの復元と確率的推定を行った。
論文 参考訳(メタデータ) (2023-02-27T08:40:45Z) - Graph Sequential Neural ODE Process for Link Prediction on Dynamic and
Sparse Graphs [33.294977897987685]
動的グラフ上のリンク予測は、グラフマイニングにおいて重要な課題である。
動的グラフニューラルネットワーク(DGNN)に基づく既存のアプローチは通常、かなりの量の履歴データを必要とする。
グラフシークエンシャルニューラルネットワークプロセス(GSNOP)と呼ばれる,ニューラルプロセスに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-11-15T23:21:02Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Deep Dynamic Effective Connectivity Estimation from Multivariate Time
Series [0.0]
我々はニューラルネットワークトレーニング(DECENNT)による動的有効接続推定を開発する。
DECENNTは5つの異なるタスクに対して最先端(SOTA)メソッドを上回り、解釈可能なタスク固有の動的グラフを推論する。
論文 参考訳(メタデータ) (2022-02-04T21:14:21Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
グラフニューラルネットワーク(GNN)は、グラフデータのテストとトレーニングを同一の分布から行うことで、優れたパフォーマンスを実現している。
既存のGNNでは、テストとグラフデータのトレーニングの間に分散シフトが存在する場合、その性能が著しく低下する。
本稿では,学習グラフと異なる分布を持つ未確認試験グラフに対して,満足な性能を実現するために,アウト・オブ・ディストリビューション一般化グラフニューラルネットワーク(OOD-GNN)を提案する。
論文 参考訳(メタデータ) (2021-12-07T16:29:10Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。