SAM2 for Image and Video Segmentation: A Comprehensive Survey
- URL: http://arxiv.org/abs/2503.12781v1
- Date: Mon, 17 Mar 2025 03:33:36 GMT
- Title: SAM2 for Image and Video Segmentation: A Comprehensive Survey
- Authors: Zhang Jiaxing, Tang Hao,
- Abstract summary: Image and video segmentation are fundamental tasks in computer vision with wide-ranging applications in healthcare, agriculture, industrial inspection, and autonomous driving.<n>With the advent of large-scale foundation models, SAM2 has been optimized for segmentation tasks, demonstrating enhanced performance in complex scenarios.<n>This paper systematically analyzes the application of SAM2 in image and video segmentation and evaluates its performance in various fields.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant advances in deep learning for image and video segmentation, existing models continue to face challenges in cross-domain adaptability and generalization. Image and video segmentation are fundamental tasks in computer vision with wide-ranging applications in healthcare, agriculture, industrial inspection, and autonomous driving. With the advent of large-scale foundation models, SAM2 - an improved version of SAM (Segment Anything Model)has been optimized for segmentation tasks, demonstrating enhanced performance in complex scenarios. However, SAM2's adaptability and limitations in specific domains require further investigation. This paper systematically analyzes the application of SAM2 in image and video segmentation and evaluates its performance in various fields. We begin by introducing the foundational concepts of image segmentation, categorizing foundation models, and exploring the technical characteristics of SAM and SAM2. Subsequently, we delve into SAM2's applications in static image and video segmentation, emphasizing its performance in specialized areas such as medical imaging and the challenges of cross-domain adaptability. As part of our research, we reviewed over 200 related papers to provide a comprehensive analysis of the topic. Finally, the paper highlights the strengths and weaknesses of SAM2 in segmentation tasks, identifies the technical challenges it faces, and proposes future development directions. This review provides valuable insights and practical recommendations for optimizing and applying SAM2 in real-world scenarios.
Related papers
- DC-SAM: In-Context Segment Anything in Images and Videos via Dual Consistency [91.30252180093333]
We propose the Dual Consistency SAM (DCSAM) method based on prompttuning to adapt SAM and SAM2 for in-context segmentation.
Our key insights are to enhance the features of the SAM's prompt encoder in segmentation by providing high-quality visual prompts.
Although the proposed DC-SAM is primarily designed for images, it can be seamlessly extended to the video domain with the support SAM2.
arXiv Detail & Related papers (2025-04-16T13:41:59Z) - Inspiring the Next Generation of Segment Anything Models: Comprehensively Evaluate SAM and SAM 2 with Diverse Prompts Towards Context-Dependent Concepts under Different Scenes [63.966251473172036]
The foundational model SAM has influenced multiple fields within computer vision, and its upgraded version, SAM 2, enhances capabilities in video segmentation.<n>While SAMs have demonstrated excellent performance in segmenting context-independent concepts like people, cars, and roads, they overlook more challenging context-dependent (CD) concepts, such as visual saliency, camouflage, product defects, and medical lesions.<n>We conduct a thorough quantitative evaluation of SAMs on 11 CD concepts across 2D and 3D images and videos in various visual modalities within natural, medical, and industrial scenes.
arXiv Detail & Related papers (2024-12-02T08:03:56Z) - On Efficient Variants of Segment Anything Model: A Survey [63.127753705046]
The Segment Anything Model (SAM) is a foundational model for image segmentation tasks, known for its strong generalization across diverse applications.
To address this, a variety of SAM variants have been proposed to enhance efficiency while keeping accuracy.
This survey provides the first comprehensive review of these efficient SAM variants.
arXiv Detail & Related papers (2024-10-07T11:59:54Z) - Unleashing the Potential of SAM2 for Biomedical Images and Videos: A Survey [8.216028136706948]
Segment Anything Model (SAM) signifies a noteworthy expansion of the prompt-driven paradigm into the domain of image segmentation.
Recent introduction of SAM2 effectively extends the original SAM to a streaming fashion and demonstrates strong performance in video segmentation.
This paper presents an overview of recent efforts in applying and adapting SAM2 to biomedical images and videos.
arXiv Detail & Related papers (2024-08-23T07:51:10Z) - Evaluating SAM2's Role in Camouflaged Object Detection: From SAM to SAM2 [10.751277821864916]
Report reveals a decline in SAM2's ability to perceive different objects in images without prompts in its auto mode.
Specifically, we employ the challenging task of camouflaged object detection to assess this performance decrease.
arXiv Detail & Related papers (2024-07-31T13:32:10Z) - Segment Anything for Videos: A Systematic Survey [52.28931543292431]
The recent wave of foundation models has witnessed tremendous success in computer vision (CV) and beyond.
The segment anything model (SAM) has sparked a passion for exploring task-agnostic visual foundation models.
This work conducts a systematic review on SAM for videos in the era of foundation models.
arXiv Detail & Related papers (2024-07-31T02:24:53Z) - A Comprehensive Survey on Segment Anything Model for Vision and Beyond [7.920790211915402]
It is urgent to design a general class of models, which we term foundation models, trained on broad data.
The recently proposed segment anything model (SAM) has made significant progress in breaking the boundaries of segmentation.
This paper introduces the background and terminology for foundation models including SAM, as well as state-of-the-art methods contemporaneous with SAM.
arXiv Detail & Related papers (2023-05-14T16:23:22Z) - A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering [49.732628643634975]
The Segment Anything Model (SAM), developed by Meta AI Research, offers a robust framework for image and video segmentation.
This survey provides a comprehensive exploration of the SAM family, including SAM and SAM 2, highlighting their advancements in granularity and contextual understanding.
arXiv Detail & Related papers (2023-05-12T07:21:59Z) - A Survey on Deep Learning Technique for Video Segmentation [147.0767454918527]
Video segmentation plays a critical role in a broad range of practical applications.
Deep learning based approaches have been dedicated to video segmentation and delivered compelling performance.
arXiv Detail & Related papers (2021-07-02T15:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.