論文の概要: Decision Stacks: Flexible Reinforcement Learning via Modular Generative
Models
- arxiv url: http://arxiv.org/abs/2306.06253v2
- Date: Sun, 29 Oct 2023 21:48:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 21:26:19.049944
- Title: Decision Stacks: Flexible Reinforcement Learning via Modular Generative
Models
- Title(参考訳): 決定スタック: モジュール生成モデルによる柔軟な強化学習
- Authors: Siyan Zhao and Aditya Grover
- Abstract要約: Decision Stacksは、ゴール条件付きポリシーエージェントを3つの生成モジュールに分解する生成フレームワークである。
これらのモジュールは、教師の強制によって並列に学習できる独立した生成モデルを通じて、観察、報酬、行動の時間的進化をシミュレートする。
我々のフレームワークは、アーキテクチャバイアス、最適化目標とダイナミクス、ドメイン間の転送可能性、推論速度といった重要な要素を考慮するために、個々のモジュールを設計する際の表現性と柔軟性の両方を保証します。
- 参考スコア(独自算出の注目度): 37.79386205079626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning presents an attractive paradigm to reason about
several distinct aspects of sequential decision making, such as specifying
complex goals, planning future observations and actions, and critiquing their
utilities. However, the combined integration of these capabilities poses
competing algorithmic challenges in retaining maximal expressivity while
allowing for flexibility in modeling choices for efficient learning and
inference. We present Decision Stacks, a generative framework that decomposes
goal-conditioned policy agents into 3 generative modules. These modules
simulate the temporal evolution of observations, rewards, and actions via
independent generative models that can be learned in parallel via teacher
forcing. Our framework guarantees both expressivity and flexibility in
designing individual modules to account for key factors such as architectural
bias, optimization objective and dynamics, transferrability across domains, and
inference speed. Our empirical results demonstrate the effectiveness of
Decision Stacks for offline policy optimization for several MDP and POMDP
environments, outperforming existing methods and enabling flexible generative
decision making.
- Abstract(参考訳): 強化学習は、複雑な目標の特定、将来の観察と行動の計画、ユーティリティの評価など、シーケンシャルな意思決定のいくつかの異なる側面を推論するための魅力的なパラダイムを提供する。
しかし、これらの能力の統合は、効率的な学習と推論のためのモデリング選択の柔軟性を許容しながら、最大表現性を維持するためのアルゴリズム的課題を競合する。
目標条件付きポリシーエージェントを3つの生成モジュールに分解する生成フレームワークであるDecision Stacksを提案する。
これらのモジュールは、教師の強制によって並列に学習できる独立した生成モデルを通じて、観察、報酬、行動の時間的進化をシミュレートする。
このフレームワークは、アーキテクチャバイアス、最適化目標とダイナミクス、ドメイン間の転送可能性、推論速度といった重要な要因を考慮して、個々のモジュールを設計する際の表現性と柔軟性の両方を保証します。
実験の結果,いくつかのMDPおよびPMDP環境におけるオフラインポリシー最適化における決定スタックの有効性が実証された。
関連論文リスト
- Closed-form merging of parameter-efficient modules for Federated Continual Learning [9.940242741914748]
一度に1つのLoRA行列をトレーニングする交代最適化戦略であるLoRMを導入する。
これにより、未知の変数を個別に解くことができ、ユニークな解を見つけることができる。
本手法は,さまざまなFCILシナリオにおける最先端性能を示す。
論文 参考訳(メタデータ) (2024-10-23T15:30:13Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Attitudes and Latent Class Choice Models using Machine learning [0.0]
LCCM (Latent Class Choice Models) の仕様において, 位置インジケータを効率的に組み込む手法を提案する。
この定式化は、位置指標と決定選択との関係を探索する能力において構造方程式を克服する。
我々は,デンマークのコペンハーゲンから,カーシェアリング(Car-Sharing, CS)サービスサブスクリプションの選択を推定するためのフレームワークをテストした。
論文 参考訳(メタデータ) (2023-02-20T10:03:01Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。