D3L: Decomposition of 3D Rotation and Lift from 2D Joint to 3D for Human
Mesh Recovery
- URL: http://arxiv.org/abs/2306.06406v2
- Date: Mon, 25 Dec 2023 06:53:25 GMT
- Title: D3L: Decomposition of 3D Rotation and Lift from 2D Joint to 3D for Human
Mesh Recovery
- Authors: Xiaoyang Hao (1 and 2), Han Li (1), Jun Cheng (2), Lei Wang (2) ((1)
Southern University of Science and Technology, (2) Shenzhen Institute of
Advanced Technology, Chinese Academy of Sciences)
- Abstract summary: We propose a novel approach, Decomposition of 3D Rotation and Lift from 2D Joint to 3D mesh (D3L)
We disentangle 3D joint rotation into bone direction and bone twist direction so that the human mesh recovery task is broken down into estimation of pose, twist, and shape.
Our approach can leverage human pose estimation methods, and avoid pose errors introduced by shape estimation overfitting.
- Score: 0.6638820451554986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing methods for 3D human mesh recovery always directly estimate SMPL
parameters, which involve both joint rotations and shape parameters. However,
these methods present rotation semantic ambiguity, rotation error accumulation,
and shape estimation overfitting, which also leads to errors in the estimated
pose. Additionally, these methods have not efficiently leveraged the
advancements in another hot topic, human pose estimation. To address these
issues, we propose a novel approach, Decomposition of 3D Rotation and Lift from
2D Joint to 3D mesh (D3L). We disentangle 3D joint rotation into bone direction
and bone twist direction so that the human mesh recovery task is broken down
into estimation of pose, twist, and shape, which can be handled independently.
Then we design a 2D-to-3D lifting network for estimating twist direction and 3D
joint position from 2D joint position sequences and introduce a nonlinear
optimization method for fitting shape parameters and bone directions. Our
approach can leverage human pose estimation methods, and avoid pose errors
introduced by shape estimation overfitting. We conduct experiments on the
Human3.6M dataset and demonstrate improved performance compared to existing
methods by a large margin.
Related papers
- LInKs "Lifting Independent Keypoints" -- Partial Pose Lifting for
Occlusion Handling with Improved Accuracy in 2D-3D Human Pose Estimation [4.648549457266638]
We present LInKs, a novel unsupervised learning method to recover 3D human poses from 2D kinematic skeletons.
Our approach follows a unique two-step process, which involves first lifting the occluded 2D pose to the 3D domain.
This lift-then-fill approach leads to significantly more accurate results compared to models that complete the pose in 2D space alone.
arXiv Detail & Related papers (2023-09-13T18:28:04Z) - 3D-Aware Neural Body Fitting for Occlusion Robust 3D Human Pose
Estimation [28.24765523800196]
We propose 3D-aware Neural Body Fitting (3DNBF) for 3D human pose estimation.
In particular, we propose a generative model of deep features based on a volumetric human representation with Gaussian ellipsoidal kernels emitting 3D pose-dependent feature vectors.
The neural features are trained with contrastive learning to become 3D-aware and hence to overcome the 2D-3D ambiguity.
arXiv Detail & Related papers (2023-08-19T22:41:00Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
arXiv Detail & Related papers (2023-08-18T16:41:57Z) - JOTR: 3D Joint Contrastive Learning with Transformers for Occluded Human
Mesh Recovery [84.67823511418334]
This paper presents 3D JOint contrastive learning with TRansformers framework for handling occluded 3D human mesh recovery.
Our method includes an encoder-decoder transformer architecture to fuse 2D and 3D representations for achieving 2D$&$3D aligned results.
arXiv Detail & Related papers (2023-07-31T02:58:58Z) - Diffusion-Based 3D Human Pose Estimation with Multi-Hypothesis
Aggregation [64.874000550443]
A Diffusion-based 3D Pose estimation (D3DP) method with Joint-wise reProjection-based Multi-hypothesis Aggregation (JPMA) is proposed.
The proposed JPMA assembles multiple hypotheses generated by D3DP into a single 3D pose for practical use.
Our method outperforms the state-of-the-art deterministic and probabilistic approaches by 1.5% and 8.9%, respectively.
arXiv Detail & Related papers (2023-03-21T04:00:47Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
This paper focuses on reconstructing a 3D pose from a single 2D keypoint detection.
We build a novel diffusion-based framework to effectively sample diverse 3D poses from an off-the-shelf 2D detector.
We evaluate our method on the widely adopted Human3.6M and HumanEva-I datasets.
arXiv Detail & Related papers (2022-12-06T07:22:20Z) - (Fusionformer):Exploiting the Joint Motion Synergy with Fusion Network
Based On Transformer for 3D Human Pose Estimation [1.52292571922932]
Many previous methods lack the understanding of local joint information.cite8888987considers the temporal relationship of a single joint in this work.
Our proposed textbfFusionformer method introduces a global-temporal self-trajectory module and a cross-temporal self-trajectory module.
The results show an improvement of 2.4% MPJPE and 4.3% P-MPJPE on the Human3.6M dataset.
arXiv Detail & Related papers (2022-10-08T12:22:10Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - 3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous
Image Data [77.57798334776353]
We consider the problem of obtaining dense 3D reconstructions of humans from single and partially occluded views.
We suggest that ambiguities can be modelled more effectively by parametrizing the possible body shapes and poses.
We show that our method outperforms alternative approaches in ambiguous pose recovery on standard benchmarks for 3D humans.
arXiv Detail & Related papers (2020-11-02T13:55:31Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
Large-scale human datasets with 3D ground-truth annotations are difficult to obtain in the wild.
We address this problem by augmenting existing 2D datasets with high-quality 3D pose fits.
The resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in-the-wild benchmarks.
arXiv Detail & Related papers (2020-04-07T20:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.