BlockTheFall: Wearable Device-based Fall Detection Framework Powered by
Machine Learning and Blockchain for Elderly Care
- URL: http://arxiv.org/abs/2306.06452v1
- Date: Sat, 10 Jun 2023 14:18:44 GMT
- Title: BlockTheFall: Wearable Device-based Fall Detection Framework Powered by
Machine Learning and Blockchain for Elderly Care
- Authors: Bilash Saha, Md Saiful Islam, Abm Kamrul Riad, Sharaban Tahora,
Hossain Shahriar, Sweta Sneha
- Abstract summary: "BlockTheFall," a wearable device-based fall detection framework, detects falls in real time by using sensor data from wearable devices.
The collected sensor data is analyzed using machine learning algorithms.
The proposed framework stores and verifies fall event data using blockchain technology.
- Score: 0.44739156031315913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Falls among the elderly are a major health concern, frequently resulting in
serious injuries and a reduced quality of life. In this paper, we propose
"BlockTheFall," a wearable device-based fall detection framework which detects
falls in real time by using sensor data from wearable devices. To accurately
identify patterns and detect falls, the collected sensor data is analyzed using
machine learning algorithms. To ensure data integrity and security, the
framework stores and verifies fall event data using blockchain technology. The
proposed framework aims to provide an efficient and dependable solution for
fall detection with improved emergency response, and elderly individuals'
overall well-being. Further experiments and evaluations are being carried out
to validate the effectiveness and feasibility of the proposed framework, which
has shown promising results in distinguishing genuine falls from simulated
falls. By providing timely and accurate fall detection and response, this
framework has the potential to substantially boost the quality of elderly care.
Related papers
- Computer-Aided Fall Recognition Using a Three-Stream Spatial-Temporal GCN Model with Adaptive Feature Aggregation [0.5235143203977018]
Prevention of falls is paramount in modern healthcare, particularly for the elderly.
A computer-aided fall detection system is inevitable to save elderly people's lives worldwide.
This paper proposes a novel three-stream spatial-temporal feature-based fall detection system.
arXiv Detail & Related papers (2024-08-22T08:40:04Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Credible Teacher for Semi-Supervised Object Detection in Open Scene [106.25850299007674]
In Open Scene Semi-Supervised Object Detection (O-SSOD), unlabeled data may contain unknown objects not observed in the labeled data.
It is detrimental to the current methods that mainly rely on self-training, as more uncertainty leads to the lower localization and classification precision of pseudo labels.
We propose Credible Teacher, an end-to-end framework to prevent uncertain pseudo labels from misleading the model.
arXiv Detail & Related papers (2024-01-01T08:19:21Z) - Machine Learning and Feature Ranking for Impact Fall Detection Event
Using Multisensor Data [1.9731252964716424]
We employ a feature selection process to identify the most relevant features from the multisensor UP-FALL dataset.
We then evaluate the efficiency of various machine learning models in detecting the impact moment.
Our results achieve high accuracy rates in impact detection, showcasing the power of leveraging multisensor data for fall detection tasks.
arXiv Detail & Related papers (2023-12-21T01:05:44Z) - Recall-driven Precision Refinement: Unveiling Accurate Fall Detection
using LSTM [0.0]
This paper presents an innovative approach to address the pressing concern of fall incidents among the elderly by developing an accurate fall detection system.
Our proposed system combines state-of-the-art technologies, including accelerometer and gyroscope sensors, with deep learning models, specifically Long Short-Term Memory (LSTM) networks.
We introduce pruning techniques that strategically fine-tune the LSTM model's architecture and parameters to optimize the system's performance.
arXiv Detail & Related papers (2023-09-09T20:17:39Z) - CareFall: Automatic Fall Detection through Wearable Devices and AI
Methods [0.0]
CareFall is an automatic Fall Detection System (FDS) based on wearable devices and Artificial Intelligence (AI) methods.
CareFall considers the accelerometer and gyroscope time signals extracted from a smartwatch.
arXiv Detail & Related papers (2023-07-11T14:08:51Z) - Deep Learning-based Fall Detection Algorithm Using Ensemble Model of
Coarse-fine CNN and GRU Networks [7.624051346741515]
An ensemble model that combines a coarse-fine convolutional neural network and gated recurrent unit is proposed in this study.
The proposed model achieves a recall, precision, and F-score of 92.54%, 96.13%, and 94.26%, respectively.
arXiv Detail & Related papers (2023-04-13T08:30:46Z) - Temporal Robustness against Data Poisoning [69.01705108817785]
Data poisoning considers cases when an adversary manipulates the behavior of machine learning algorithms through malicious training data.
We propose a temporal threat model of data poisoning with two novel metrics, earliness and duration, which respectively measure how long an attack started in advance and how long an attack lasted.
arXiv Detail & Related papers (2023-02-07T18:59:19Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.