Computer-Aided Fall Recognition Using a Three-Stream Spatial-Temporal GCN Model with Adaptive Feature Aggregation
- URL: http://arxiv.org/abs/2408.12211v1
- Date: Thu, 22 Aug 2024 08:40:04 GMT
- Title: Computer-Aided Fall Recognition Using a Three-Stream Spatial-Temporal GCN Model with Adaptive Feature Aggregation
- Authors: Jungpil Shin, Abu Saleh Musa Miah, Rei Egawa1, Koki Hirooka, Md. Al Mehedi Hasan, Yoichi Tomioka, Yong Seok Hwang,
- Abstract summary: Prevention of falls is paramount in modern healthcare, particularly for the elderly.
A computer-aided fall detection system is inevitable to save elderly people's lives worldwide.
This paper proposes a novel three-stream spatial-temporal feature-based fall detection system.
- Score: 0.5235143203977018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prevention of falls is paramount in modern healthcare, particularly for the elderly, as falls can lead to severe injuries or even fatalities. Additionally, the growing incidence of falls among the elderly, coupled with the urgent need to prevent suicide attempts resulting from medication overdose, underscores the critical importance of accurate and efficient fall detection methods. In this scenario, a computer-aided fall detection system is inevitable to save elderly people's lives worldwide. Many researchers have been working to develop fall detection systems. However, the existing fall detection systems often struggle with issues such as unsatisfactory performance accuracy, limited robustness, high computational complexity, and sensitivity to environmental factors due to a lack of effective features. In response to these challenges, this paper proposes a novel three-stream spatial-temporal feature-based fall detection system. Our system incorporates joint skeleton-based spatial and temporal Graph Convolutional Network (GCN) features, joint motion-based spatial and temporal GCN features, and residual connections-based features. Each stream employs adaptive graph-based feature aggregation and consecutive separable convolutional neural networks (Sep-TCN), significantly reducing computational complexity and model parameters compared to prior systems. Experimental results across multiple datasets demonstrate the superior effectiveness and efficiency of our proposed system, with accuracies of 99.51\%, 99.15\%, 99.79\% and 99.85 \% achieved on the ImViA, UR-Fall, Fall-UP and FU-Kinect datasets, respectively. The remarkable performance of our system highlights its superiority, efficiency, and generalizability in real-world fall detection scenarios, offering significant advancements in healthcare and societal well-being.
Related papers
- REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Temporal Shift -- Multi-Objective Loss Function for Improved Anomaly
Fall Detection [3.813649699234981]
We propose a new multi-objective loss function called Temporal Shift, which aims to predict both future and reconstructed frames within a window of sequential frames.
With significant improvement across different models, this approach has the potential to be widely adopted and improve anomaly detection capabilities in other settings besides fall detection.
arXiv Detail & Related papers (2023-11-06T04:29:12Z) - The online learning architecture with edge computing for high-level
control for assisting patients [3.1084001733555584]
The prevalence of mobility impairments due to conditions such as spinal cord injuries, strokes, and degenerative diseases is on the rise globally.
Lower-limb exoskeletons have been increasingly recognized as a viable solution for enhancing mobility and rehabilitation for individuals with such impairments.
Existing exoskeleton control systems often suffer from limitations such as latency, lack of adaptability, and computational inefficiency.
This paper introduces a novel online adversarial learning architecture integrated with edge computing for high-level lower-limb exoskeleton control.
arXiv Detail & Related papers (2023-09-10T20:30:03Z) - Recall-driven Precision Refinement: Unveiling Accurate Fall Detection
using LSTM [0.0]
This paper presents an innovative approach to address the pressing concern of fall incidents among the elderly by developing an accurate fall detection system.
Our proposed system combines state-of-the-art technologies, including accelerometer and gyroscope sensors, with deep learning models, specifically Long Short-Term Memory (LSTM) networks.
We introduce pruning techniques that strategically fine-tune the LSTM model's architecture and parameters to optimize the system's performance.
arXiv Detail & Related papers (2023-09-09T20:17:39Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Deep Learning-based Fall Detection Algorithm Using Ensemble Model of
Coarse-fine CNN and GRU Networks [7.624051346741515]
An ensemble model that combines a coarse-fine convolutional neural network and gated recurrent unit is proposed in this study.
The proposed model achieves a recall, precision, and F-score of 92.54%, 96.13%, and 94.26%, respectively.
arXiv Detail & Related papers (2023-04-13T08:30:46Z) - SFF-DA: Sptialtemporal Feature Fusion for Detecting Anxiety
Nonintrusively [16.170315080992182]
We propose a framework based on "3CNND+LSTM" and fused similarity features of facial behavior and noncontact physiology.
Our framework was validated with dataset from the real world and two public datasets.
arXiv Detail & Related papers (2022-08-12T01:20:51Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Cloud Failure Prediction with Hierarchical Temporary Memory: An
Empirical Assessment [64.73243241568555]
Hierarchical Temporary Memory (HTM) is an unsupervised learning algorithm inspired by the features of the neocortex.
This paper presents the first systematic study that assesses HTM in the context of failure prediction.
arXiv Detail & Related papers (2021-10-06T07:09:45Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.