Bed-Attached Vibration Sensor System: A Machine Learning Approach for Fall Detection in Nursing Homes
- URL: http://arxiv.org/abs/2412.04950v1
- Date: Fri, 06 Dec 2024 11:08:47 GMT
- Title: Bed-Attached Vibration Sensor System: A Machine Learning Approach for Fall Detection in Nursing Homes
- Authors: Thomas Bartz-Beielstein, Axel Wellendorf, Noah Pütz, Jens Brandt, Alexander Hinterleitner, Richard Schulz, Richard Scholz, Olaf Mersmann, Robin Knabe,
- Abstract summary: This study presents the development of an automated fall detection system integrated into care beds, aimed at enhancing patient safety without compromising privacy through wearables or video monitoring.
Mechanical vibrations transmitted through the bed frame are processed using a short-time Fourier transform, enabling robust classification of distinct human fall patterns with a convolutional neural network.
Despite limited available data, the proposed system shows the potential for an accurate and rapid response to falls, mitigating health implications, and addressing the needs of an aging population.
- Score: 33.45861095003339
- License:
- Abstract: The increasing shortage of nursing staff and the acute risk of falls in nursing homes pose significant challenges for the healthcare system. This study presents the development of an automated fall detection system integrated into care beds, aimed at enhancing patient safety without compromising privacy through wearables or video monitoring. Mechanical vibrations transmitted through the bed frame are processed using a short-time Fourier transform, enabling robust classification of distinct human fall patterns with a convolutional neural network. Challenges pertaining to the quantity and diversity of the data are addressed, proposing the generation of additional data with a specific emphasis on enhancing variation. While the model shows promising results in distinguishing fall events from noise using lab data, further testing in real-world environments is recommended for validation and improvement. Despite limited available data, the proposed system shows the potential for an accurate and rapid response to falls, mitigating health implications, and addressing the needs of an aging population. This case study was performed as part of the ZIM Project. Further research on sensors enhanced by artificial intelligence will be continued in the ShapeFuture Project.
Related papers
- Federated Anomaly Detection for Early-Stage Diagnosis of Autism Spectrum Disorders using Serious Game Data [0.0]
This study presents a novel semi-supervised approach for ASD detection using AutoEncoder-based Machine Learning (ML) methods.
Our approach utilizes data collected manually through a serious game specifically designed for this purpose.
Since the sensitive data collected by the gamified application are susceptible to privacy leakage, we developed a Federated Learning framework.
arXiv Detail & Related papers (2024-10-25T23:00:12Z) - Computer-Aided Fall Recognition Using a Three-Stream Spatial-Temporal GCN Model with Adaptive Feature Aggregation [0.5235143203977018]
Prevention of falls is paramount in modern healthcare, particularly for the elderly.
A computer-aided fall detection system is inevitable to save elderly people's lives worldwide.
This paper proposes a novel three-stream spatial-temporal feature-based fall detection system.
arXiv Detail & Related papers (2024-08-22T08:40:04Z) - Explainable Machine Learning-Based Security and Privacy Protection Framework for Internet of Medical Things Systems [1.8434042562191815]
The Internet of Medical Things (IoMT) transcends traditional medical boundaries, enabling a transition from reactive treatment to proactive prevention.
Its benefits are countered by significant security challenges that endanger the lives of its users due to the sensitivity and value of the processed data.
A new framework for Intrusion Detection Systems (IDS) is introduced, leveraging Artificial Neural Networks (ANN) for intrusion detection while utilizing Federated Learning (FL) for privacy preservation.
arXiv Detail & Related papers (2024-03-14T11:57:26Z) - Machine Learning and Feature Ranking for Impact Fall Detection Event
Using Multisensor Data [1.9731252964716424]
We employ a feature selection process to identify the most relevant features from the multisensor UP-FALL dataset.
We then evaluate the efficiency of various machine learning models in detecting the impact moment.
Our results achieve high accuracy rates in impact detection, showcasing the power of leveraging multisensor data for fall detection tasks.
arXiv Detail & Related papers (2023-12-21T01:05:44Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Deep Learning-based Fall Detection Algorithm Using Ensemble Model of
Coarse-fine CNN and GRU Networks [7.624051346741515]
An ensemble model that combines a coarse-fine convolutional neural network and gated recurrent unit is proposed in this study.
The proposed model achieves a recall, precision, and F-score of 92.54%, 96.13%, and 94.26%, respectively.
arXiv Detail & Related papers (2023-04-13T08:30:46Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.