論文の概要: Defining and Explorting the Intelligence Space
- arxiv url: http://arxiv.org/abs/2306.06499v1
- Date: Sat, 10 Jun 2023 18:05:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 18:45:36.702979
- Title: Defining and Explorting the Intelligence Space
- Title(参考訳): インテリジェンス空間の定義と探索
- Authors: Paul S. Rosenbloom
- Abstract要約: この記事では,3段階のインテリジェンスのネスト階層と,その周辺に構築されたより広い空間の両方を誘導する定義のカスケードを概説する。
このインテリジェンス空間内では、自然(特に人間)のインテリジェンスと人工知能(AI)の両方に対応する領域が特定される。
これらの定義は、特異性、生成的AI、倫理、知的財産権という、より先進的でより議論の的になる4つのトピックの初期の探索で活用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligence is a difficult concept to define, despite many attempts at doing
so. Rather than trying to settle on a single definition, this article
introduces a broad perspective on what intelligence is, by laying out a cascade
of definitions that induces both a nested hierarchy of three levels of
intelligence and a wider-ranging space that is built around them and
approximations to them. Within this intelligence space, regions are identified
that correspond to both natural -- most particularly, human -- intelligence and
artificial intelligence (AI), along with the crossover notion of humanlike
intelligence. These definitions are then exploited in early explorations of
four more advanced, and likely more controversial, topics: the singularity,
generative AI, ethics, and intellectual property.
- Abstract(参考訳): 知性は、多くの試みにもかかわらず、定義するのが難しい概念である。
この記事では,3段階の知能のネスト階層と,その周辺に構築された広い空間の両方を誘導する定義のカスケードを配置し,インテリジェンスとは何か,という広い視点を紹介する。
このインテリジェンス空間内では、人間のようなインテリジェンスというクロスオーバーの概念とともに、自然(特に人間)のインテリジェンスと人工知能(AI)の両方に対応する領域が特定される。
これらの定義は、特異性、生成的AI、倫理、知的財産権という、より先進的でより議論の的になる4つのトピックの初期の探索で活用される。
関連論文リスト
- AI-as-exploration: Navigating intelligence space [0.05657375260432172]
私は、AIが果たさなければならない、無視されるが中心的な科学的な役割の輪郭を明確に表現します。
AI-as-explorationの基本的な推力は、知性の候補構築ブロックを明らかにするシステムの作成と研究である。
論文 参考訳(メタデータ) (2024-01-15T21:06:20Z) - On a Functional Definition of Intelligence [0.0]
合意されたインテリジェンスの定義がなければ、"このシステムはインテリジェントか?
知性(intelligence)とは、哲学、心理学、認知科学の分野である。
我々は、その知性が実際に達成される方法とは異なる、純粋に機能的でブラックボックスな知性の定義について論じる。
論文 参考訳(メタデータ) (2023-12-15T05:46:49Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
生成AIの最近の波は、潜在的に超人的な人工知能レベルに対する興奮と懸念を引き起こしている。
同時に、モデルは、専門家でない人でも期待できないような理解の基本的な誤りを示している。
一見超人的な能力と、ごく少数の人間が起こすエラーの持続性を、どうやって再現すればよいのか?
論文 参考訳(メタデータ) (2023-10-31T18:07:07Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - A Theory of Intelligences [0.0]
私は物理学から生物学、人間、AIに至るまで、あらゆるシステムに適用可能なフレームワークを開発しています。
インテリジェンスとその構成要素に関する一般的な方程式と、インテリジェンス特性の進化のための単純な表現について述べる。
論文 参考訳(メタデータ) (2023-08-23T20:18:43Z) - Bridging the Gap between Artificial Intelligence and Artificial General
Intelligence: A Ten Commandment Framework for Human-Like Intelligence [2.360534864805446]
我々は、人間の知性が体系的かつ階層的に構築される10の戒律を識別する。
これらの命令は、高次の認知と知性の出現に繋がる重要な要素として、まとめて機能すると考えています。
論文 参考訳(メタデータ) (2022-10-17T19:08:15Z) - Emergence of Machine Language: Towards Symbolic Intelligence with Neural
Networks [73.94290462239061]
本稿では、ニューラルネットワークを用いてシンボルとコネクショナリズムの原理を組み合わせることで、離散表現を導出することを提案する。
対話型環境とタスクを設計することにより、機械が自発的で柔軟でセマンティックな言語を生成できることを実証した。
論文 参考訳(メタデータ) (2022-01-14T14:54:58Z) - An argument for the impossibility of machine intelligence [0.0]
AIの担い手になり得るエージェント(デバイス)とは何かを定義する。
我々は「知性の主流」の定義が弱すぎて、昆虫に知性を割り当てる際に関係するものを捉えることができないことを示した。
私たちは、この定義によって知能の担い手となるために、AIエージェントが保持しなければならない特性を特定します。
論文 参考訳(メタデータ) (2021-10-20T08:54:48Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。