論文の概要: TS-MoCo: Time-Series Momentum Contrast for Self-Supervised Physiological
Representation Learning
- arxiv url: http://arxiv.org/abs/2306.06522v1
- Date: Sat, 10 Jun 2023 21:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 18:37:13.001548
- Title: TS-MoCo: Time-Series Momentum Contrast for Self-Supervised Physiological
Representation Learning
- Title(参考訳): TS-MoCo:自己監督型生理学的表現学習のための時系列モーメントコントラスト
- Authors: Philipp Hallgarten, David Bethge, Ozan \"Ozdenizci, Tobias
Grosse-Puppendahl, Enkelejda Kasneci
- Abstract要約: ラベルを必要とせずに様々な生理領域から表現を学習するために,モーメントコントラストを持つ自己教師型学習に依存した新しい符号化フレームワークを提案する。
我々の自己教師型学習アプローチは、下流の分類タスクで活用できる差別的特徴を実際に学習できることを示します。
- 参考スコア(独自算出の注目度): 8.129782272731397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Limited availability of labeled physiological data often prohibits the use of
powerful supervised deep learning models in the biomedical machine intelligence
domain. We approach this problem and propose a novel encoding framework that
relies on self-supervised learning with momentum contrast to learn
representations from multivariate time-series of various physiological domains
without needing labels. Our model uses a transformer architecture that can be
easily adapted to classification problems by optimizing a linear output
classification layer. We experimentally evaluate our framework using two
publicly available physiological datasets from different domains, i.e., human
activity recognition from embedded inertial sensory and emotion recognition
from electroencephalography. We show that our self-supervised learning approach
can indeed learn discriminative features which can be exploited in downstream
classification tasks. Our work enables the development of domain-agnostic
intelligent systems that can effectively analyze multivariate time-series data
from physiological domains.
- Abstract(参考訳): ラベル付き生理データの限られた利用は、しばしばバイオメディカルマシンインテリジェンス領域における強力な教師付きディープラーニングモデルの使用を禁止している。
本稿では,様々な生理領域の多変量時系列からラベルを必要とせずに表現を学習するために,運動量コントラストを用いた自己教師付き学習に基づく新しい符号化フレームワークを提案する。
本モデルは、線形出力分類層を最適化することにより、容易に分類問題に適用できるトランスアーキテクチャを用いる。
我々は,脳波による人間の活動認識と脳波による感情認識という,異なる領域から利用可能な2つの生理的データセットを用いて,我々の枠組みを実験的に評価した。
自己教師付き学習アプローチは,下流分類タスクで活用可能な識別的特徴を実際に学習できることを実証する。
本研究は,生理領域から多変量時系列データを効果的に解析できる,ドメインに依存しない知的システムの開発を可能にする。
関連論文リスト
- Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
潜時変動モデルを用いた生理モニタリングに関する高次元問題について検討する。
まず、光学的に得られた信号を入力として、心の電気波形を生成するための新しい状態空間モデルを提案する。
次に,確率的グラフィカルモデルの強みと深い敵対学習を組み合わせた脳信号モデリング手法を提案する。
第3に,生理的尺度と行動の合同モデリングのための枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:07:33Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Joint-Embedding Masked Autoencoder for Self-supervised Learning of
Dynamic Functional Connectivity from the Human Brain [18.165807360855435]
グラフニューラルネットワーク(GNN)は、人間の脳ネットワークと表現型を区別するための動的機能接続の学習において、有望であることを示している。
本稿では,計算機ビジョンにおけるJEPA(Joint Embedding Predictive Architecture)からインスピレーションを得た,時空間連成型自動エンコーダ(ST-JEMA)について紹介する。
論文 参考訳(メタデータ) (2024-03-11T04:49:41Z) - Let's do the time-warp-attend: Learning topological invariants of dynamical systems [3.9735602856280132]
本稿では、動的状態の分類と分岐境界の特徴付けのための、データ駆動型、物理的にインフォームドされたディープラーニングフレームワークを提案する。
超臨界ホップ分岐のパラダイム的ケースに着目し、様々な応用の周期的ダイナミクスをモデル化する。
本手法は, 広範囲な力学系の定性的・長期的挙動に関する貴重な知見を提供し, 大規模物理・生物系における分岐や破滅的な遷移を検出する。
論文 参考訳(メタデータ) (2023-12-14T18:57:16Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
我々は、様々な弱い教師付きおよびパッチレベルのタスクに対する検証を行い、様々な自己教師付きモデルを訓練することにより、病理学における良い表現を探索する。
我々の重要な発見は、DINOベースの知識蒸留を用いたビジョントランスフォーマーが、組織像におけるデータ効率と解釈可能な特徴を学習できることを発見したことである。
論文 参考訳(メタデータ) (2022-03-01T16:14:41Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
本稿では,自己組織マップとヘビアン様学習を用いた再突入理論に基づく脳刺激型ニューラルシステムを提案する。
システムトポロジがユーザによって固定されるのではなく,自己組織化によって学習されるような,いわゆるハードウェアの可塑性の獲得について述べる。
論文 参考訳(メタデータ) (2020-04-11T21:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。