論文の概要: Motivational models for validating agile requirements in Software
Engineering subjects
- arxiv url: http://arxiv.org/abs/2306.06834v1
- Date: Mon, 12 Jun 2023 02:51:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 03:56:04.992810
- Title: Motivational models for validating agile requirements in Software
Engineering subjects
- Title(参考訳): ソフトウェア工学におけるアジャイル要件検証のためのモチベーションモデル
- Authors: Eduardo A. Oliveira, Leon Sterling
- Abstract要約: モチベーションモデルは、ソフトウェアシステムの目的に対する高いレベルの理解を提供する。
システム機能よりもユーザニーズを重視したペルソナとユーザストーリを補完します。
- 参考スコア(独自算出の注目度): 1.0878040851638
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper describes how motivational models can be used to cross check agile
requirements artifacts to improve consistency and completeness of software
requirements. Motivational models provide a high level understanding of the
purposes of a software system. They complement personas and user stories which
focus more on user needs rather than on system features. We present an
exploratory case study sought to understand how software engineering students
could use motivational models to create better requirements artifacts so they
are understandable to non-technical users, easily understood by developers, and
are consistent with each other. Nine consistency principles were created as an
outcome of our study and are now successfully adopted by software engineering
students at the University of Melbourne to ensure consistency between
motivational models, personas, and user stories in requirements engineering.
- Abstract(参考訳): 本稿では,モチベーションモデルを用いてアジャイル要件アーティファクトのクロスチェックを行い,ソフトウェア要件の一貫性と完全性を改善する方法について説明する。
モチベーションモデルは、ソフトウェアシステムの目的に対する高いレベルの理解を提供する。
システム機能よりもユーザニーズを重視するペルソナとユーザストーリを補完するものだ。
本稿では,ソフトウェア工学の学生がモチベーションモデルを用いて,より優れた要件アーティファクトを作成する方法を理解し,非技術ユーザに対して理解しやすく,開発者が容易に理解し,相互に一貫性を持たせることを目的とした探索的ケーススタディを提案する。
9つの一貫性原則が研究の結果として作成され、現在はメルボルン大学のソフトウェア工学の学生によって、要求工学におけるモチベーションモデル、ペルソナ、ユーザストーリの一貫性を確保するためにうまく採用されています。
関連論文リスト
- Abstraction Engineering [6.091612632147657]
抽象化はすでに、ソフトウェア開発に関わる多くの分野で使われています。
本稿では、これらの新しい課題を考察し、抽象のレンズを通してそれらに取り組むことを提案する。
抽象化エンジニアリングの基礎について議論し、主要な課題を特定し、これらの課題に対処するための研究課題を強調し、将来の研究のロードマップを作成します。
論文 参考訳(メタデータ) (2024-08-26T07:56:32Z) - Low-Modeling of Software Systems [2.3170227013988947]
新しいタイプのユーザインターフェース、インテリジェントなコンポーネントの必要性、持続可能性に関する懸念、...私たちが対処しなければならない新しい課題をもたらします。
本稿では,現在のモデル駆動工学技術を強化するためのソリューションとして,低モデリングの概念を提案する。
論文 参考訳(メタデータ) (2024-02-28T14:50:27Z) - Beimingwu: A Learnware Dock System [42.54363998206648]
本稿では,Beimingwuについて述べる。Beimingwuはオープンソースのラーニングウェアドックシステムであり,将来のラーニングウェアパラダイムの研究に基盤的支援を提供する。
このシステムは、統合アーキテクチャとエンジン設計のおかげで、新しいユーザータスクのためのモデル開発を大幅に効率化する。
特に、生データのセキュリティを損なうことなく、限られたデータと機械学習に関する最小限の専門知識を持つユーザでも、これは可能だ。
論文 参考訳(メタデータ) (2024-01-24T09:27:51Z) - TrainerAgent: Customizable and Efficient Model Training through
LLM-Powered Multi-Agent System [14.019244136838017]
TrainerAgentは、タスク、データ、モデル、サーバーエージェントを含むマルチエージェントフレームワークである。
これらのエージェントは、ユーザ定義のタスク、入力データ、要求(例えば、精度、速度)を分析し、データとモデルの両方の観点からそれらを最適化して満足なモデルを取得し、最終的にこれらのモデルをオンラインサービスとしてデプロイする。
本研究は,従来のモデル開発と比較して,効率と品質が向上した望ましいモデルの実現において,大きな進歩を示すものである。
論文 参考訳(メタデータ) (2023-11-11T17:39:24Z) - Machine Learning with Requirements: a Manifesto [114.97965827971132]
要件定義と満足度は、マシンラーニングモデルが現実世界にさらに適合するように、長い道のりを歩むことができる、と私たちは主張しています。
私たちは、要求仕様を標準の機械学習開発パイプラインにうまく組み込む方法を示します。
論文 参考訳(メタデータ) (2023-04-07T14:47:13Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
本稿では,これらの異なる視覚言語タスクの協調学習に驚くほど有効であるマルチモーダルタスクのためのデコーダのみのモデルを提案する。
これらの多様な目的の合同学習は単純で効果的であり、これらのタスク間でのモデルの重量共有を最大化することを示した。
我々のモデルは,画像テキストとテキスト画像検索,ビデオ質問応答,オープン語彙検出タスクにおける技術の現状を達成し,より大きく,より広範囲に訓練された基礎モデルよりも優れている。
論文 参考訳(メタデータ) (2023-03-29T16:42:30Z) - Learnware: Small Models Do Big [69.88234743773113]
自然言語処理やコンピュータビジョンの応用で目覚ましい成果を上げてきた、一般的なビッグモデルパラダイムは、これらの問題にまだ対応していないが、炭素排出量の深刻な源となっている。
この記事では、マシンラーニングモデルをスクラッチから構築する必要がないようにするための学習ソフトウェアパラダイムの概要を紹介します。
論文 参考訳(メタデータ) (2022-10-07T15:55:52Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - An Experience Report on Machine Learning Reproducibility: Guidance for
Practitioners and TensorFlow Model Garden Contributors [1.177923904173852]
本報告では,最先端の機械学習モデルをモデルガーデンに組み込むのに適した品質で再現するプロセスを定義する。
我々は26人の学生からなるチームでYOLOモデルファミリの実装経験を報告し、開発したツールを共有し、その過程で学んだ教訓を説明する。
論文 参考訳(メタデータ) (2021-07-02T04:32:18Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
本稿では,機械学習アプリケーション開発のためのプロセスモデルを提案する。
第1フェーズでは、データの可用性がプロジェクトの実現可能性に影響を与えることが多いため、ビジネスとデータの理解が結合されます。
第6フェーズでは、機械学習アプリケーションの監視とメンテナンスに関する最先端のアプローチがカバーされている。
論文 参考訳(メタデータ) (2020-03-11T08:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。