A Brief Review of Hypernetworks in Deep Learning
- URL: http://arxiv.org/abs/2306.06955v3
- Date: Sat, 13 Jul 2024 16:54:28 GMT
- Title: A Brief Review of Hypernetworks in Deep Learning
- Authors: Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, David A. Clifton,
- Abstract summary: Hypernetworks are neural networks that generate weights for another neural network, known as the target network.
We present an illustrative example of training deep neural networks using hypernets and propose categorizing hypernets based on five design criteria.
We discuss the challenges and future directions that remain underexplored in the field of hypernets.
- Score: 16.82262394666801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypernetworks, or hypernets for short, are neural networks that generate weights for another neural network, known as the target network. They have emerged as a powerful deep learning technique that allows for greater flexibility, adaptability, dynamism, faster training, information sharing, and model compression. Hypernets have shown promising results in a variety of deep learning problems, including continual learning, causal inference, transfer learning, weight pruning, uncertainty quantification, zero-shot learning, natural language processing, and reinforcement learning. Despite their success across different problem settings, there is currently no comprehensive review available to inform researchers about the latest developments and to assist in utilizing hypernets. To fill this gap, we review the progress in hypernets. We present an illustrative example of training deep neural networks using hypernets and propose categorizing hypernets based on five design criteria: inputs, outputs, variability of inputs and outputs, and the architecture of hypernets. We also review applications of hypernets across different deep learning problem settings, followed by a discussion of general scenarios where hypernets can be effectively employed. Finally, we discuss the challenges and future directions that remain underexplored in the field of hypernets. We believe that hypernetworks have the potential to revolutionize the field of deep learning. They offer a new way to design and train neural networks, and they have the potential to improve the performance of deep learning models on a variety of tasks. Through this review, we aim to inspire further advancements in deep learning through hypernetworks.
Related papers
- Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
We provide an explicit, non-asymptotic characterization of the learning dynamics of wide neural networks trained using popularDGD algorithms.
We validate our analytical results by accurately predicting error and error and for classification tasks.
arXiv Detail & Related papers (2024-09-23T17:57:58Z) - A simple theory for training response of deep neural networks [0.0]
Deep neural networks give us a powerful method to model the training dataset's relationship between input and output.
We show the training response consists of some different factors based on training stages, activation functions, or training methods.
In addition, we show feature space reduction as an effect of training dynamics, which can result in network fragility.
arXiv Detail & Related papers (2024-05-07T07:20:15Z) - Principled Weight Initialization for Hypernetworks [15.728811174027896]
Hypernetworks are meta neural networks that generate weights for a main neural network in an end-to-end differentiable manner.
We show that classical weight-as-a-service methods fail to produce weights for the mainnet in the correct scale.
We develop principled techniques for weight-as-a-service in hypernets, and show that they lead to more stable mainnet weights, lower training loss, and faster convergence.
arXiv Detail & Related papers (2023-12-13T04:49:18Z) - Magnitude Invariant Parametrizations Improve Hypernetwork Learning [0.0]
Hypernetworks are powerful neural networks that predict the parameters of another neural network.
Training typically converges far more slowly than for non-hypernetwork models.
We identify a fundamental and previously unidentified problem that contributes to the challenge of training hypernetworks.
We present a simple solution to this problem using a revised hypernetwork formulation that we call Magnitude Invariant Parametrizations (MIP)
arXiv Detail & Related papers (2023-04-15T22:18:29Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Deep Reinforcement Learning with Spiking Q-learning [51.386945803485084]
spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption.
It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (RL)
arXiv Detail & Related papers (2022-01-21T16:42:11Z) - Provable Regret Bounds for Deep Online Learning and Control [77.77295247296041]
We show that any loss functions can be adapted to optimize the parameters of a neural network such that it competes with the best net in hindsight.
As an application of these results in the online setting, we obtain provable bounds for online control controllers.
arXiv Detail & Related papers (2021-10-15T02:13:48Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
Botnets are now a major source for many network attacks, such as DDoS attacks and spam.
In this paper, we consider the neural network design challenges of using modern deep learning techniques to learn policies for botnet detection automatically.
arXiv Detail & Related papers (2020-03-13T15:34:33Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.