論文の概要: On the Computation-Communication Trade-Off with A Flexible Gradient
Tracking Approach
- arxiv url: http://arxiv.org/abs/2306.07159v1
- Date: Mon, 12 Jun 2023 14:46:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 14:09:47.971138
- Title: On the Computation-Communication Trade-Off with A Flexible Gradient
Tracking Approach
- Title(参考訳): フレキシブルなグラディエント追従手法による計算通信トレードオフについて
- Authors: Yan Huang and Jinming Xu
- Abstract要約: 本稿では,ネットワーク上の分散最適化問題の解法として,調整可能な計算と通信ステップを用いた柔軟な勾配追従手法を提案する。
我々は、滑らかで凸な目的関数上で任意の精度を達成するために、計算と通信の複雑さの両方を導出する。
- 参考スコア(独自算出の注目度): 6.877328172726638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a flexible gradient tracking approach with adjustable computation
and communication steps for solving distributed stochastic optimization problem
over networks. The proposed method allows each node to perform multiple local
gradient updates and multiple inter-node communications in each round, aiming
to strike a balance between computation and communication costs according to
the properties of objective functions and network topology in non-i.i.d.
settings. Leveraging a properly designed Lyapunov function, we derive both the
computation and communication complexities for achieving arbitrary accuracy on
smooth and strongly convex objective functions. Our analysis demonstrates sharp
dependence of the convergence performance on graph topology and properties of
objective functions, highlighting the trade-off between computation and
communication. Numerical experiments are conducted to validate our theoretical
findings.
- Abstract(参考訳): 本稿では,分散確率最適化問題をネットワーク上で解くための,調整可能な計算と通信ステップを備えた柔軟な勾配追従手法を提案する。
提案手法では,各ノードが各ラウンドで複数の局所勾配更新と複数ノード間通信を行い,目的関数の特性やネットワークトポロジに応じて計算コストと通信コストのバランスをとることを目的としている。
適切に設計されたリアプノフ関数を利用して、滑らかで強い凸目的関数の任意の精度を達成するために計算と通信の複雑さの両方を導出する。
本解析は,グラフトポロジーと目的関数の性質に対する収束性能の鋭い依存性を示し,計算と通信のトレードオフを浮き彫りにした。
理論的結果を検証するため, 数値実験を行った。
関連論文リスト
- Decentralized Federated Learning with Gradient Tracking over Time-Varying Directed Networks [42.92231921732718]
本稿では,DSGTm-TVというコンセンサスに基づくアルゴリズムを提案する。
グラデーショントラッキングとヘビーボールモーメントを取り入れて、グローバルな目的関数を最適化する。
DSGTm-TVでは、エージェントは近隣エージェントとの情報交換を用いて局所モデルパラメータと勾配推定を更新する。
論文 参考訳(メタデータ) (2024-09-25T06:23:16Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
本稿では,正と負の相関関係を持つタスクに対する分散・フェデレーション学習アルゴリズムを提案する。
本アルゴリズムでは,タスク間の相関関係を自動的に計算し,コミュニケーショングラフを動的に調整して相互に有益なタスクを接続し,互いに悪影響を及ぼす可能性のあるタスクを分離する。
合成ガウスデータセットと大規模セレブ属性(CelebA)データセットについて実験を行った。
論文 参考訳(メタデータ) (2022-12-21T18:58:24Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
粗大な処理で対応性を見出すことにより、ECO-TR(Correspondence Efficient Transformer)と呼ばれる効率的な構造を提案する。
これを実現するために、複数の変圧器ブロックは段階的に連結され、予測された座標を徐々に洗練する。
種々のスパースタスクと密マッチングタスクの実験は、既存の最先端技術に対する効率性と有効性の両方において、我々の手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-09-25T13:05:33Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
有限精度レベルは、固定精度フォーマットで重みとアクティベーションを定量化する量子ニューラルネットワーク(QNN)を使用して取得される。
提案するFLフレームワークは,ベースラインFLアルゴリズムと比較して,収束までのエネルギー消費量を最大70%削減することができる。
論文 参考訳(メタデータ) (2022-07-19T16:37:24Z) - Fundamental Limits of Communication Efficiency for Model Aggregation in
Distributed Learning: A Rate-Distortion Approach [54.311495894129585]
本研究では,分散学習におけるモデルアグリゲーションの通信コストの限界について,速度歪みの観点から検討する。
SignSGDでは,ワーカノード間の相関を利用した通信利得が重要であることがわかった。
論文 参考訳(メタデータ) (2022-06-28T13:10:40Z) - Push--Pull with Device Sampling [8.344476599818826]
複数のエージェントが協力して、基礎となる通信グラフを交換することで、ローカル関数の平均を最小化する分散最適化問題を考察する。
ネットワーク全体の勾配追跡と分散低減を併用したアルゴリズムを提案する。
理論解析により,局所目的関数が強凸である場合,アルゴリズムは線形に収束することを示した。
論文 参考訳(メタデータ) (2022-06-08T18:18:18Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems [3.660098145214465]
我々は,合成関数とそのニューラルネットワーク近似の近似理論を開発した。
構成関数の重要な特徴の集合と,ニューラルネットワークの特徴と複雑性の関係を同定する。
関数近似に加えて、ニューラルネットワークの誤差上限の式もいくつか証明する。
論文 参考訳(メタデータ) (2020-12-03T04:40:25Z) - Federated Learning with Compression: Unified Analysis and Sharp
Guarantees [39.092596142018195]
通信コストは、数百万のデバイスからモデルを学ぶために分散最適化アルゴリズムをスケールアップする上で、重要なボトルネックとなることが多い。
フェデレーション圧縮と計算の通信オーバーヘッドに対処する2つの顕著な傾向は、信頼できない圧縮と不均一な通信である。
等質データと異質データの両方における収束度を解析する。
論文 参考訳(メタデータ) (2020-07-02T14:44:07Z) - Communication-efficient Variance-reduced Stochastic Gradient Descent [0.0]
通信効率のよい分散最適化の問題を考える。
特に、分散還元勾配に着目し、通信効率を高めるための新しいアプローチを提案する。
実データセットの包括的理論的および数値解析により、我々のアルゴリズムは通信の複雑さを95%減らし、ほとんど顕著なペナルティを伴わないことが明らかとなった。
論文 参考訳(メタデータ) (2020-03-10T13:22:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。