論文の概要: Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems
- arxiv url: http://arxiv.org/abs/2012.01698v1
- Date: Thu, 3 Dec 2020 04:40:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-24 02:12:17.700184
- Title: Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems
- Title(参考訳): 構成関数のニューラルネットワーク近似と力学系への応用
- Authors: Wei Kang and Qi Gong
- Abstract要約: 我々は,合成関数とそのニューラルネットワーク近似の近似理論を開発した。
構成関数の重要な特徴の集合と,ニューラルネットワークの特徴と複雑性の関係を同定する。
関数近似に加えて、ニューラルネットワークの誤差上限の式もいくつか証明する。
- 参考スコア(独自算出の注目度): 3.660098145214465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As demonstrated in many areas of real-life applications, neural networks have
the capability of dealing with high dimensional data. In the fields of optimal
control and dynamical systems, the same capability was studied and verified in
many published results in recent years. Towards the goal of revealing the
underlying reason why neural networks are capable of solving some high
dimensional problems, we develop an algebraic framework and an approximation
theory for compositional functions and their neural network approximations. The
theoretical foundation is developed in a way so that it supports the error
analysis for not only functions as input-output relations, but also numerical
algorithms. This capability is critical because it enables the analysis of
approximation errors for problems for which analytic solutions are not
available, such as differential equations and optimal control. We identify a
set of key features of compositional functions and the relationship between the
features and the complexity of neural networks. In addition to function
approximations, we prove several formulae of error upper bounds for neural
networks that approximate the solutions to differential equations,
optimization, and optimal control.
- Abstract(参考訳): 実生活の多くの領域で示されているように、ニューラルネットワークは高次元データを扱う能力を持っている。
最適制御と力学系の分野において、同じ能力が近年公表された多くの結果において研究され検証された。
ニューラルネットワークが高次元の問題を解決することができる理由を明らかにすることを目的として,構成関数の代数的フレームワークと近似理論とそのニューラルネットワーク近似を開発した。
理論的な基礎は、入力-出力関係として関数の誤差解析をサポートするだけでなく、数値アルゴリズムとしても開発されている。
この能力は、微分方程式や最適制御のような解析解が利用できない問題に対する近似誤差の解析を可能にするため、重要である。
構成関数の重要な特徴の集合と,ニューラルネットワークの特徴と複雑性の関係を同定する。
関数近似に加えて、微分方程式、最適化、最適制御の解を近似するニューラルネットワークの誤差上限の式をいくつか証明する。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Differentiable Visual Computing for Inverse Problems and Machine
Learning [27.45555082573493]
ビジュアルコンピューティング手法は、幾何学を解析し、固体、流体、その他の媒体を物理的にシミュレートし、光学技術で世界をレンダリングするために用いられる。
ディープラーニング(DL)は、一般的なアルゴリズムモデルの構築を可能にする。
DLは高度にパラメータ化されたニューラルネットワークアーキテクチャ -- ユニバーサル関数近似器 -- と勾配に基づく検索アルゴリズムによって実現されている。
論文 参考訳(メタデータ) (2023-11-21T23:02:58Z) - An Analysis of Physics-Informed Neural Networks [0.0]
我々は物理システム – 物理インフォームドニューラルネットワーク – に対する解を近似する新しいアプローチを提案する。
人工ニューラルネットワークの概念を導入し、目的関数を定義し、最適化戦略について議論する。
偏微分方程式は、問題の損失関数の制約として含まれ、ネットワークがモデリングしている物理系の力学の知識にアクセスできる。
論文 参考訳(メタデータ) (2023-03-06T04:45:53Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - On the Approximation and Complexity of Deep Neural Networks to Invariant
Functions [0.0]
深部ニューラルネットワークの不変関数への近似と複雑性について検討する。
様々なタイプのニューラルネットワークモデルにより、幅広い不変関数を近似できることを示す。
我々は,高分解能信号のパラメータ推定と予測を理論的結論と結びつけることが可能なアプリケーションを提案する。
論文 参考訳(メタデータ) (2022-10-27T09:19:19Z) - Multigoal-oriented dual-weighted-residual error estimation using deep
neural networks [0.0]
ディープラーニングは、関数を近似する柔軟性の高い強力なツールだと考えられている。
提案手法は,誤差の局所化に付随する問題を解く後続誤差推定法に基づく。
複数のゴール関数に対する後方誤差推定を得るために,効率的で実装が容易なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-12-21T16:59:44Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。