論文の概要: Generalized Power Attacks against Crypto Hardware using Long-Range Deep Learning
- arxiv url: http://arxiv.org/abs/2306.07249v2
- Date: Fri, 26 Apr 2024 13:29:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 18:27:27.325900
- Title: Generalized Power Attacks against Crypto Hardware using Long-Range Deep Learning
- Title(参考訳): Long-Range Deep Learningを用いた暗号ハードウェアに対する汎用パワーアタック
- Authors: Elie Bursztein, Luca Invernizzi, Karel Král, Daniel Moghimi, Jean-Michel Picod, Marina Zhang,
- Abstract要約: GPAMは電力側チャネル解析のためのディープラーニングシステムである。
複数の暗号アルゴリズム、実装、およびサイドチャネル対策を一般化する。
ハードウェアアクセラレーションを高速化した楕円曲線のデジタル署名実装を4つのハード化してGPAMの能力を実証する。
- 参考スコア(独自算出の注目度): 6.409047279789011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To make cryptographic processors more resilient against side-channel attacks, engineers have developed various countermeasures. However, the effectiveness of these countermeasures is often uncertain, as it depends on the complex interplay between software and hardware. Assessing a countermeasure's effectiveness using profiling techniques or machine learning so far requires significant expertise and effort to be adapted to new targets which makes those assessments expensive. We argue that including cost-effective automated attacks will help chip design teams to quickly evaluate their countermeasures during the development phase, paving the way to more secure chips. In this paper, we lay the foundations toward such automated system by proposing GPAM, the first deep-learning system for power side-channel analysis that generalizes across multiple cryptographic algorithms, implementations, and side-channel countermeasures without the need for manual tuning or trace preprocessing. We demonstrate GPAM's capability by successfully attacking four hardened hardware-accelerated elliptic-curve digital-signature implementations. We showcase GPAM's ability to generalize across multiple algorithms by attacking a protected AES implementation and achieving comparable performance to state-of-the-art attacks, but without manual trace curation and within a limited budget. We release our data and models as an open-source contribution to allow the community to independently replicate our results and build on them.
- Abstract(参考訳): 暗号プロセッサのサイドチャネル攻撃に対する耐性を高めるために、エンジニアは様々な対策を開発した。
しかし、ソフトウェアとハードウェアの複雑な相互作用に依存するため、これらの対策の有効性は不確かであることが多い。
これまでのプロファイリング技術や機械学習を用いた対策の有効性を評価するには、これらの評価を高価にするためには、新たな目標に適応するための重要な専門知識と努力が必要である。
我々は、コスト効率のよい自動攻撃を含めることで、チップ設計チームが開発フェーズにおける対策を迅速に評価し、よりセキュアなチップへの道を開くことができると論じている。
本稿では,手動チューニングやトレース前処理を必要とせずに,複数の暗号アルゴリズム,実装,サイドチャネル対策を一般化した,パワーサイドチャネル解析のための最初のディープラーニングシステムGPAMを提案する。
ハードウェアアクセラレーションを高速化した楕円曲線のデジタル署名実装を4つのハード化してGPAMの能力を実証する。
GPAMは、保護されたAES実装を攻撃し、手動のトレースキュレーションや限られた予算で、最先端の攻撃に匹敵する性能を達成することで、複数のアルゴリズムをまたいで一般化する能力を示す。
データとモデルをオープンソースコントリビューションとしてリリースし、コミュニティが独立して結果を複製し、その上に構築できるようにします。
関連論文リスト
- SoK: A Systems Perspective on Compound AI Threats and Countermeasures [3.458371054070399]
我々は、複合AIシステムに適用可能な、異なるソフトウェアとハードウェアの攻撃について議論する。
複数の攻撃機構を組み合わせることで、孤立攻撃に必要な脅威モデル仮定をいかに削減できるかを示す。
論文 参考訳(メタデータ) (2024-11-20T17:08:38Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - Defense against ML-based Power Side-channel Attacks on DNN Accelerators with Adversarial Attacks [21.611341074006162]
AIAShieldはFPGAベースのAIアクセラレータを保護するための新しい防衛手法である。
我々は、機械学習コミュニティの卓越した敵攻撃技術を活用して、繊細なノイズを発生させる。
AIAShieldは、転送性に優れた既存のソリューションより優れている。
論文 参考訳(メタデータ) (2023-12-07T04:38:01Z) - A Unified Hardware-based Threat Detector for AI Accelerators [12.96840649714218]
FPGAベースのAIアクセラレータを保護するために,UniGuardを設計する。
我々は、電力変動を捉え、教師付き機械学習モデルを訓練し、様々な種類の脅威を特定するために、タイム・トゥ・デジタル・コンバータを用いている。
論文 参考訳(メタデータ) (2023-11-28T10:55:02Z) - Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components [0.0]
PolEnは、サイドチャネル攻撃を効果的に軽減するために、対策を組み合わせるツールチェーンとプロセッサアーキテクチャである。
コード暗号化はプロセッサ拡張によってサポートされ、マシン命令はCPU内でのみ復号化される。
プログラムの可観測環境を定期的に変更し、攻撃者が予測できないようにする。
論文 参考訳(メタデータ) (2023-10-11T09:16:10Z) - Investigating Efficient Deep Learning Architectures For Side-Channel
Attacks on AES [0.0]
我々は、ASCAD(ANSSI Side-Channel Attack Database)に焦点を当て、ディープラーニングベースのSCAのためのJAXベースのフレームワークを作成します。
また,様々なトランスフォーマーモデルの有効性についても検討した。
論文 参考訳(メタデータ) (2023-09-22T20:16:40Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks [68.01125081367428]
近年の研究では、機械学習アルゴリズムは敵攻撃に弱いことが示されている。
本稿では,脳波をベースとしたBCIの毒殺攻撃に狭周期パルスを用いることを提案する。
論文 参考訳(メタデータ) (2020-10-30T20:49:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。