論文の概要: Intelligent IoT Attack Detection Design via ODLLM with Feature Ranking-based Knowledge Base
- arxiv url: http://arxiv.org/abs/2503.21674v1
- Date: Thu, 27 Mar 2025 16:41:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 18:49:11.610048
- Title: Intelligent IoT Attack Detection Design via ODLLM with Feature Ranking-based Knowledge Base
- Title(参考訳): 特徴ランク付けに基づく知識ベースを用いたODLLMによる知的IoT攻撃検出設計
- Authors: Satvik Verma, Qun Wang, E. Wes Bethel,
- Abstract要約: IoT(Internet of Things)デバイスは,重大なサイバーセキュリティ上の課題を導入している。
従来の機械学習(ML)技術は、混在するパターンと進化するパターンの複雑さのために、このような攻撃を検出するのに不足することが多い。
本稿では,オンデバイス大規模言語モデル(ODLLMs)を微調整と知識ベース(KB)統合で拡張し,インテリジェントなIoTネットワーク攻撃検出を実現する新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.964942474860411
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread adoption of Internet of Things (IoT) devices has introduced significant cybersecurity challenges, particularly with the increasing frequency and sophistication of Distributed Denial of Service (DDoS) attacks. Traditional machine learning (ML) techniques often fall short in detecting such attacks due to the complexity of blended and evolving patterns. To address this, we propose a novel framework leveraging On-Device Large Language Models (ODLLMs) augmented with fine-tuning and knowledge base (KB) integration for intelligent IoT network attack detection. By implementing feature ranking techniques and constructing both long and short KBs tailored to model capacities, the proposed framework ensures efficient and accurate detection of DDoS attacks while overcoming computational and privacy limitations. Simulation results demonstrate that the optimized framework achieves superior accuracy across diverse attack types, especially when using compact models in edge computing environments. This work provides a scalable and secure solution for real-time IoT security, advancing the applicability of edge intelligence in cybersecurity.
- Abstract(参考訳): IoT(Internet of Things)デバイスの普及により、特にDDoS(Distributed Denial of Service)攻撃の頻度と洗練が増大する中で、サイバーセキュリティ上の大きな課題が発生している。
従来の機械学習(ML)技術は、混在するパターンと進化するパターンの複雑さのために、このような攻撃を検出するのに不足することが多い。
そこで本研究では,オンデバイス大規模言語モデル(ODLLMs)を微調整および知識ベース(KB)統合で拡張し,インテリジェントなIoTネットワークアタック検出を実現する新しいフレームワークを提案する。
特徴ランク付け手法を実装し,モデル能力に適した長短KBと長短KBの両方を構築することにより,計算とプライバシーの制限を克服しつつ,DDoS攻撃の効率的かつ正確な検出を実現する。
シミュレーションの結果、最適化されたフレームワークは、特にエッジコンピューティング環境でコンパクトなモデルを使用する場合、様々な攻撃タイプにまたがる優れた精度を実現することが示された。
この作業は、リアルタイムIoTセキュリティのためのスケーラブルでセキュアなソリューションを提供し、サイバーセキュリティにおけるエッジインテリジェンスの適用性を向上させる。
関連論文リスト
- Leveraging Machine Learning for Botnet Attack Detection in Edge-Computing Assisted IoT Networks [0.34530027457862006]
本稿では,エッジコンピューティング支援IoT環境におけるセキュリティ向上のための機械学習技術の適用について検討する。
ボットネット脅威の動的で複雑な性質に対処するため、ランダムフォレスト、XGBoost、LightGBMの比較分析を行う。
この結果は、IoTネットワークを新たなサイバーセキュリティ問題に対して強化する機械学習の可能性を強調している。
論文 参考訳(メタデータ) (2025-08-03T01:52:35Z) - Expert-in-the-Loop Systems with Cross-Domain and In-Domain Few-Shot Learning for Software Vulnerability Detection [38.083049237330826]
本研究では,CWE(Common Weaknessions)を用いたPythonコードの識別をシミュレーションすることにより,ソフトウェア脆弱性評価におけるLLM(Large Language Models)の利用について検討する。
その結果,ゼロショットプロンプトは性能が低いが,少数ショットプロンプトは分類性能を著しく向上させることがわかった。
モデル信頼性、解釈可能性、敵の堅牢性といった課題は、将来の研究にとって重要な領域のままである。
論文 参考訳(メタデータ) (2025-06-11T18:43:51Z) - Network Anomaly Detection for IoT Using Hyperdimensional Computing on NSL-KDD [0.2399911126932527]
本稿では,超次元計算(HDC)技術を用いたネットワーク異常検出手法を提案する。
提案手法は,大規模データ処理におけるHDCの効率を利用して,未知の攻撃パターンと未知の攻撃パターンを識別する。
このモデルはKDDTrain+サブセットで91.55%の精度を達成し、従来のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2025-03-04T22:19:26Z) - Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset [0.0]
これらの脅威を緩和するためには、侵入検知システム(IDS)が不可欠である。
機械学習(ML)の最近の進歩は、改善のための有望な道を提供する。
本研究は、いくつかのスタンドアロンMLモデルを組み合わせたハイブリッドアプローチを探求する。
論文 参考訳(メタデータ) (2025-02-17T23:41:10Z) - Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
従来の集中型セキュリティ手法は、IoTネットワークにおけるプライバシ保護とリアルタイム脅威検出のバランスをとるのに苦労することが多い。
本研究では,IoT環境に特化したフェデレート学習駆動型サイバーセキュリティフレームワークを提案する。
局所的に訓練されたモデルのセキュアアグリゲーションは、同型暗号を用いて達成され、機密情報を漏らさずに協調学習が可能である。
論文 参考訳(メタデータ) (2025-02-14T23:11:51Z) - Smart IoT Security: Lightweight Machine Learning Techniques for Multi-Class Attack Detection in IoT Networks [0.0]
IoT(Internet of Things)は急速に拡大しており、さまざまなサイバー脅威を緩和するためのセキュアなネットワークを持つことが重要になっている。
本研究は、IoTデバイスのマルチクラス攻撃検出の限界に対処し、新しい機械学習ベースの軽量アンサンブル手法を提案する。
論文 参考訳(メタデータ) (2025-02-06T13:17:03Z) - Learning in Multiple Spaces: Few-Shot Network Attack Detection with Metric-Fused Prototypical Networks [47.18575262588692]
本稿では,数発の攻撃検出に適した新しいマルチスペースプロトタイプ学習フレームワークを提案する。
Polyakの平均的なプロトタイプ生成を活用することで、このフレームワークは学習プロセスを安定化し、稀でゼロデイの攻撃に効果的に適応する。
ベンチマークデータセットによる実験結果から、MSPLは、目立たない、新しい攻撃タイプを検出する従来のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-12-28T00:09:46Z) - A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
本稿では,Deep Learning-integrated Convolutional Neural Networks (CNN) とLong Short-Term Memory (LSTM) ネットワークを用いたモノのインターネット(IoT)環境侵入検知システム(IDS)の革新的な設計を提案する。
われわれのモデルはCICIDS 2017データセットに基づいて、ネットワークトラフィックを良性または悪意のいずれかとして分類する精度99.52%を達成した。
論文 参考訳(メタデータ) (2024-06-18T08:42:51Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSのデプロイを困難にしている。
軽量CNNと双方向LSTM(BiLSTM)を組み合わせたハイブリッドCNNアーキテクチャを提案し,UNSW-NB15データセット上でのIDSの性能向上を図る。
論文 参考訳(メタデータ) (2024-06-04T20:36:21Z) - Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts [80.0638227807621]
生成人工知能(GAI)モデルは、従来のAI手法よりも優れていることを示した。
ゲート機構による予測に複数の専門家モデルを使用するMoEは、可能なソリューションを提案する。
論文 参考訳(メタデータ) (2024-05-07T11:13:17Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
日々の生活にIoT(Internet of Things)アプリケーションを統合することで、データトラフィックが急増し、重大なセキュリティ上の問題が発生しています。
本稿では、コストと精度のバランスの取れたトレードオフを見つけるための新しい手法を導入することにより、エッジレベルでのMLベースのIDSの有効性を向上させることに焦点を当てる。
論文 参考訳(メタデータ) (2024-04-29T21:26:18Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Constrained Twin Variational Auto-Encoder for Intrusion Detection in IoT
Systems [30.16714420093091]
侵入検知システム(IDS)は、悪意のある攻撃から何十億ものIoTデバイスを保護する上で重要な役割を果たす。
本稿では,CTVAE(Constrained Twin Variational Auto-Encoder)と呼ばれる新しいディープニューラルネットワーク/アーキテクチャを提案する。
CTVAEは、最先端の機械学習および表現学習方法と比較して、精度と検出攻撃におけるFscoreの約1%を向上することができる。
論文 参考訳(メタデータ) (2023-12-05T04:42:04Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
エッジ人工知能(AI)は、従来のクラウドをネットワークエッジまで高速に計算するために提案されている。
近年,特定のエッジAIタスクに対する無線センシング,計算,通信(SC$2$)の収束が,パラダイムシフトを引き起こしている。
超信頼性で低レイテンシなエッジインテリジェンス獲得を実現するために、完全に統合されたセンシング、計算、通信(I SCC)を進めることが最重要である。
論文 参考訳(メタデータ) (2023-06-11T06:40:51Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
モノのインターネット(IoT)デバイスには、攻撃者によって悪用される可能性のある多くの脆弱性がある傾向がある。
異常検出のような教師なしの技術は、これらのデバイスをプラグ・アンド・プロテクトで保護するために使用することができる。
Raspberry Pi48台からなる分散IoTシミュレーションプラットフォームを提案する。
論文 参考訳(メタデータ) (2020-06-18T14:50:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。