論文の概要: PauseSpeech: Natural Speech Synthesis via Pre-trained Language Model and
Pause-based Prosody Modeling
- arxiv url: http://arxiv.org/abs/2306.07489v1
- Date: Tue, 13 Jun 2023 01:36:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 15:18:00.841086
- Title: PauseSpeech: Natural Speech Synthesis via Pre-trained Language Model and
Pause-based Prosody Modeling
- Title(参考訳): PauseSpeech: 事前学習言語モデルによる自然な音声合成とポーズに基づく韻律モデリング
- Authors: Ji-Sang Hwang, Sang-Hoon Lee, and Seong-Whan Lee
- Abstract要約: 本稿では,事前学習した言語モデルとポーズに基づく韻律モデルを用いた音声合成システムPuaseSpeechを提案する。
実験の結果,PauseSpeechは自然性において過去のモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 25.966328901566815
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Although text-to-speech (TTS) systems have significantly improved, most TTS
systems still have limitations in synthesizing speech with appropriate
phrasing. For natural speech synthesis, it is important to synthesize the
speech with a phrasing structure that groups words into phrases based on
semantic information. In this paper, we propose PuaseSpeech, a speech synthesis
system with a pre-trained language model and pause-based prosody modeling.
First, we introduce a phrasing structure encoder that utilizes a context
representation from the pre-trained language model. In the phrasing structure
encoder, we extract a speaker-dependent syntactic representation from the
context representation and then predict a pause sequence that separates the
input text into phrases. Furthermore, we introduce a pause-based word encoder
to model word-level prosody based on pause sequence. Experimental results show
PauseSpeech outperforms previous models in terms of naturalness. Furthermore,
in terms of objective evaluations, we can observe that our proposed methods
help the model decrease the distance between ground-truth and synthesized
speech. Audio samples are available at
https://jisang93.github.io/pausespeech-demo/.
- Abstract(参考訳): text-to-speech (tts) システムは大幅に改善されているが、ほとんどのttsシステムは適切なフラージングによる音声合成に制限がある。
自然音声合成においては,単語を意味情報に基づいてフレーズに分類するフレーズ構造を合成することが重要である。
本稿では,事前学習型言語モデルとポーズベース韻律モデルを用いた音声合成システムであるPuaseSpeechを提案する。
まず,事前学習した言語モデルからの文脈表現を利用した表現構造エンコーダを提案する。
phrasing structure encoderでは、話者に依存した構文表現をコンテキスト表現から抽出し、入力テキストを句に分割するポーズシーケンスを予測します。
さらに,ポーズシーケンスに基づく単語レベルの韻律をモデル化するための単語エンコーダを提案する。
実験の結果,PauseSpeechは自然性において過去のモデルよりも優れていた。
さらに, 客観的評価の観点からは, 提案手法が基礎音声と合成音声間の距離を減少させるのに役立つことを示す。
オーディオサンプルはhttps://jisang93.github.io/pausespeech-demo/で入手できる。
関連論文リスト
- Moshi: a speech-text foundation model for real-time dialogue [78.88479749811376]
現在の音声対話システムは、パイプラインの独立した音声活動検出と音声合成に依存している。
そこで本研究では,Moshi Moshiが音声認識と音声合成を実現する方法を紹介する。
得られたモデルは、初めてリアルタイムな全音声大言語モデルモダリティである。
論文 参考訳(メタデータ) (2024-09-17T17:55:39Z) - TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
カスケード方式で多様なデータセットを活用する新しいモデルフレームワークTransVIPを提案する。
本稿では、話者の音声特性と、翻訳過程における音源音声からの等時性を維持するために、2つの分離エンコーダを提案する。
フランス語と英語のペアに関する実験により、我々のモデルは、現在最先端の音声音声翻訳モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-28T04:11:37Z) - HierSpeech++: Bridging the Gap between Semantic and Acoustic
Representation of Speech by Hierarchical Variational Inference for Zero-shot
Speech Synthesis [39.892633589217326]
大規模言語モデル(LLM)に基づく音声合成は、ゼロショット音声合成において広く採用されている。
テキスト音声変換(TTS)と音声変換(VC)のための高速で強力なゼロショット音声合成器であるHierSpeech++を提案する。
論文 参考訳(メタデータ) (2023-11-21T09:07:11Z) - NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot
Speech and Singing Synthesizers [90.83782600932567]
残差ベクトル化器を備えたニューラルオーディオ予測器を応用して量子化潜在ベクトルを得るTSシステムであるNaturalSpeech 2を開発した。
本研究では,NaturalSpeech 2を44K時間の音声・歌唱データを持つ大規模データセットに拡張し,未知話者の音声品質を評価する。
NaturalSpeech 2は、0ショット設定で、韻律/音節の類似性、合成、音声品質の点で、従来のTSシステムよりはるかに優れている。
論文 参考訳(メタデータ) (2023-04-18T16:31:59Z) - Duration-aware pause insertion using pre-trained language model for
multi-speaker text-to-speech [40.65850332919397]
事前訓練された言語モデルに基づいて,より強力な停止挿入フレームワークを提案する。
提案手法では,大規模テキストコーパス上で事前学習した変換器(BERT)の双方向エンコーダ表現を用いる。
また、より自然なマルチスピーカTSに対して、持続時間対応の停止挿入を利用する。
論文 参考訳(メタデータ) (2023-02-27T10:40:41Z) - SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder
Based Speech-Text Pre-training [106.34112664893622]
本稿では,音声エンコーダとテキストデコーダの表現を共有単位エンコーダに接続する,統一モーダル音声単位テキスト事前学習モデルであるSpeechUTを提案する。
提案するSpeechUTは,自動音声認識(ASR)と音声翻訳(ST)タスクに基づいて微調整および評価を行う。
論文 参考訳(メタデータ) (2022-10-07T17:57:45Z) - Unsupervised TTS Acoustic Modeling for TTS with Conditional Disentangled Sequential VAE [36.50265124324876]
本稿では,テキストと音声のペアを必要としない,教師なしの音声合成モデルであるUTTSを提案する。
このフレームワークは、話者の持続時間モデル、音色特徴(アイデンティティ)、TTS推論のための内容の柔軟な選択を提供する。
実験により、UTTSは人間と客観的評価によって測定された高い自然性と知性のある音声を合成できることが示されている。
論文 参考訳(メタデータ) (2022-06-06T11:51:22Z) - JETS: Jointly Training FastSpeech2 and HiFi-GAN for End to End Text to
Speech [7.476901945542385]
本稿では、簡易な訓練パイプラインを持ち、個別に学習したモデルのカスケードを上回り、エンドツーエンドのテキスト音声合成(E2E-TTS)モデルを提案する。
提案モデルでは,アライメントモジュールを用いたFastSpeech2とHiFi-GANを併用する。
LJSpeechコーパスの実験では、提案されたモデルはESPNet2-TTSの最先端実装よりも優れていた。
論文 参考訳(メタデータ) (2022-03-31T07:25:11Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
本稿では、中間テキスト生成に頼ることなく、ある言語から別の言語に音声を変換する直接音声音声翻訳(S2ST)モデルを提案する。
そこで本稿では,ラベルなし音声コーパスから学習した自己教師付き離散表現の予測を提案する。
対象のテキスト書き起こしが利用可能となると、同一の推論パスで2つのモード出力(音声とテキスト)を同時に生成できる、共同音声認識とテキストトレーニングを備えたマルチタスク学習フレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-12T17:40:43Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
エンド・ツー・エンドの音声翻訳は、ある言語における音声を、エンド・ツー・エンドの方法で他の言語におけるテキストに変換することを目的としている。
既存のほとんどの手法では、音響表現と意味情報を同時に学習するために、単一のエンコーダを持つエンコーダ・デコーダ構造を用いる。
本稿では,音声とテキスト間のモダリティギャップを埋めることで,エンドツーエンドのモデル性能を向上させることを目的とした音声翻訳モデルのための音声テキスト適応手法を提案する。
論文 参考訳(メタデータ) (2020-10-28T12:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。