論文の概要: Using Collision Momentum in Deep Reinforcement Learning Based
Adversarial Pedestrian Modeling
- arxiv url: http://arxiv.org/abs/2306.07525v1
- Date: Tue, 13 Jun 2023 03:38:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 15:10:56.900430
- Title: Using Collision Momentum in Deep Reinforcement Learning Based
Adversarial Pedestrian Modeling
- Title(参考訳): 深層強化学習に基づく逆ペデストリアンモデリングにおける衝突モーメントの利用
- Authors: Dianwei Chen, Ekim Yurtsever, Keith Redmill and Umit Ozguner
- Abstract要約: 本稿では,衝突を対象とする強化学習アルゴリズムを提案する。
我々のアルゴリズムは効率的で、より厳しい衝突を発生し、複雑で多様なシナリオにおける自律運転アルゴリズムの弱点の同定と修正を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research in pedestrian simulation often aims to develop realistic
behaviors in various situations, but it is challenging for existing algorithms
to generate behaviors that identify weaknesses in automated vehicles'
performance in extreme and unlikely scenarios and edge cases. To address this,
specialized pedestrian behavior algorithms are needed. Current research focuses
on realistic trajectories using social force models and reinforcement learning
based models. However, we propose a reinforcement learning algorithm that
specifically targets collisions and better uncovers unique failure modes of
automated vehicle controllers. Our algorithm is efficient and generates more
severe collisions, allowing for the identification and correction of weaknesses
in autonomous driving algorithms in complex and varied scenarios.
- Abstract(参考訳): 歩行者シミュレーションの最近の研究は、様々な状況において現実的な行動を開発することを目的としていることが多いが、既存のアルゴリズムが極端なシナリオやエッジケースにおいて、自動運転車の性能の弱点を特定する行動を生成することは困難である。
これに対処するには、特殊な歩行者行動アルゴリズムが必要である。
現在の研究は、社会力モデルと強化学習に基づくモデルを用いた現実的な軌跡に焦点を当てている。
しかし,衝突を対象とする強化学習アルゴリズムを提案し,自動車両制御装置の独自の故障モードを明らかにする。
我々のアルゴリズムは効率的であり、より深刻な衝突を引き起こし、複雑で多様なシナリオにおける自動運転アルゴリズムの弱点の同定と修正を可能にする。
関連論文リスト
- Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing [0.0]
本稿では、自動運転車における強化学習(RL)ソリューションの性能向上の問題に対処する。
計画タスクと制御タスクを分離する部分的なエンドツーエンドアルゴリズムを提案する。
従来の制御器のロバスト性を活用することにより,本アルゴリズムは標準のエンドツーエンドアルゴリズムよりもモデルミスマッチに対するロバスト性を向上する。
論文 参考訳(メタデータ) (2023-12-11T14:27:10Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
微分可能シミュレータと新しいポリシー学習アルゴリズム(SHAC)を提案する。
本アルゴリズムは,スムーズな批判機能により局所最小化の問題を軽減する。
現状のRLと微分可能なシミュレーションベースアルゴリズムと比較して,サンプル効率と壁面時間を大幅に改善した。
論文 参考訳(メタデータ) (2022-04-14T17:46:26Z) - Evaluating the Robustness of Deep Reinforcement Learning for Autonomous
Policies in a Multi-agent Urban Driving Environment [3.8073142980733]
視覚に基づく自律運転における深層強化学習の比較のためのベンチマークフレームワークを提案する。
この実験は、視覚のみの高忠実度都市運転模擬環境で実施する。
その結果, 深層強化学習アルゴリズムのいくつかは, シングルエージェントとマルチエージェントのシナリオで一貫した性能向上を実現していることがわかった。
論文 参考訳(メタデータ) (2021-12-22T15:14:50Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - Discovering Avoidable Planner Failures of Autonomous Vehicles using
Counterfactual Analysis in Behaviorally Diverse Simulation [16.86782673205523]
本稿では,行動学的に多様な交通参加者をシミュレートする上で,近年の進歩を生かしたプランナーテストフレームワークを提案する。
提案手法は,多岐にわたる重要な計画立案者の失敗を見出すことができることを示す。
論文 参考訳(メタデータ) (2020-11-24T09:44:23Z) - Efficient Model-Based Reinforcement Learning through Optimistic Policy
Search and Planning [93.1435980666675]
最先端の強化学習アルゴリズムと楽観的な探索を容易に組み合わせることができることを示す。
我々の実験は、楽観的な探索が行動に罰則がある場合、学習を著しくスピードアップすることを示した。
論文 参考訳(メタデータ) (2020-06-15T18:37:38Z) - Scalable Autonomous Vehicle Safety Validation through Dynamic
Programming and Scene Decomposition [37.61747231296097]
本稿では、近似動的プログラミングを用いて、自律的なポリシの障害に対する分布を推定する新しい安全性検証手法を提案する。
両実験とも, ベースラインアプローチと比較して, 故障数の増加が見られた。
論文 参考訳(メタデータ) (2020-04-14T21:03:50Z) - A Probabilistic Framework for Imitating Human Race Driver Behavior [31.524303667746643]
本稿では,運転行動モデリングのタスクを複数のモジュールに分割するモジュラーフレームワークProMoDを提案する。
確率的運動プリミティブを用いて大域的目標軌道分布を学習し、局所経路生成にウエイドを使用し、ニューラルネットワークにより対応する行動選択を行う。
シミュレーションカーレースセッティングの実験は、他の模倣学習アルゴリズムと比較して、模倣精度とロバスト性にかなりの利点がある。
論文 参考訳(メタデータ) (2020-01-22T20:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。