論文の概要: Scalable Autonomous Vehicle Safety Validation through Dynamic
Programming and Scene Decomposition
- arxiv url: http://arxiv.org/abs/2004.06801v2
- Date: Fri, 26 Jun 2020 15:33:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 09:31:42.067018
- Title: Scalable Autonomous Vehicle Safety Validation through Dynamic
Programming and Scene Decomposition
- Title(参考訳): 動的プログラミングとシーン分解によるスケーラブルな自動運転車安全検証
- Authors: Anthony Corso, Ritchie Lee, Mykel J. Kochenderfer
- Abstract要約: 本稿では、近似動的プログラミングを用いて、自律的なポリシの障害に対する分布を推定する新しい安全性検証手法を提案する。
両実験とも, ベースラインアプローチと比較して, 故障数の増加が見られた。
- 参考スコア(独自算出の注目度): 37.61747231296097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An open question in autonomous driving is how best to use simulation to
validate the safety of autonomous vehicles. Existing techniques rely on
simulated rollouts, which can be inefficient for finding rare failure events,
while other techniques are designed to only discover a single failure. In this
work, we present a new safety validation approach that attempts to estimate the
distribution over failures of an autonomous policy using approximate dynamic
programming. Knowledge of this distribution allows for the efficient discovery
of many failure examples. To address the problem of scalability, we decompose
complex driving scenarios into subproblems consisting of only the ego vehicle
and one other vehicle. These subproblems can be solved with approximate dynamic
programming and their solutions are recombined to approximate the solution to
the full scenario. We apply our approach to a simple two-vehicle scenario to
demonstrate the technique as well as a more complex five-vehicle scenario to
demonstrate scalability. In both experiments, we observed an increase in the
number of failures discovered compared to baseline approaches.
- Abstract(参考訳): 自動運転車の公然の疑問は、シミュレーションを使って自動運転車の安全性を検証する最善の方法だ。
既存のテクニックは、まれな障害イベントを見つけるのに非効率なシミュレーションロールアウトに依存しているが、他のテクニックは、単一障害のみを検出するように設計されている。
本研究では, 近似動的計画法を用いて, 自律的政策の障害に対する分布を推定する新しい安全性検証手法を提案する。
この分布の知識は、多くの障害例の効率的な発見を可能にする。
スケーラビリティの問題に対処するため、複雑な駆動シナリオをエゴ車と他の車両のみからなるサブプロブレムに分解する。
これらの部分問題は近似動的計画法で解くことができ、それらの解は全シナリオの解を近似するために再結合される。
この手法を単純な2車種シナリオに適用して,そのテクニックを実証するとともに,スケーラビリティを示すためにより複雑な5車種シナリオを提示する。
どちらの実験でも,ベースラインアプローチと比較して検出された障害数の増加が観察された。
関連論文リスト
- Foundation Models for Rapid Autonomy Validation [4.417336418010182]
重要な課題は、自動運転車が遭遇するあらゆる種類の運転シナリオでテストする必要があることだ。
本研究では,運転シナリオを再構築するための行動基礎モデル,特にマスク付きオートエンコーダ(MAE)の使用を提案する。
論文 参考訳(メタデータ) (2024-10-22T15:32:43Z) - Collision Probability Distribution Estimation via Temporal Difference Learning [0.46085106405479537]
累積衝突確率分布を推定する先駆的なフレームワークであるCollisionProを紹介する。
我々は、強化学習の文脈において、我々の枠組みを定式化し、安全に配慮したエージェントの道を開く。
現実的な自律運転シミュレータを用いて,本フレームワークの総合的な検討を行った。
論文 参考訳(メタデータ) (2024-07-29T13:32:42Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Adaptive Failure Search Using Critical States from Domain Experts [9.93890332477992]
フェールサーチは、シミュレーションまたは実世界のテストにおいて、かなりの走行距離をロギングすることで行うことができる。
ASTはマルコフ決定プロセスとして失敗探索の問題を提起する手法である。
ASTフレームワークにクリティカルステートを組み込むことで,安全性違反の増大を伴う障害シナリオが生成されることを示す。
論文 参考訳(メタデータ) (2023-04-01T18:14:41Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
ドライビングSMARTSは、動的相互作用コンテキストにおける分散シフトに起因する問題に対処するために設計された定期的な競争である。
提案するコンペティションは,強化学習(RL)やオフライン学習など,方法論的に多様なソリューションをサポートする。
論文 参考訳(メタデータ) (2022-11-14T17:10:53Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Discovering Avoidable Planner Failures of Autonomous Vehicles using
Counterfactual Analysis in Behaviorally Diverse Simulation [16.86782673205523]
本稿では,行動学的に多様な交通参加者をシミュレートする上で,近年の進歩を生かしたプランナーテストフレームワークを提案する。
提案手法は,多岐にわたる重要な計画立案者の失敗を見出すことができることを示す。
論文 参考訳(メタデータ) (2020-11-24T09:44:23Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Towards Automated Safety Coverage and Testing for Autonomous Vehicles
with Reinforcement Learning [0.3683202928838613]
検証は、システムが日々の運転で遭遇する可能性のあるシナリオや状況において、自動運転車システムをテストに投入する。
本稿では,AVソフトウェア実装における障害事例と予期せぬ交通状況を生成するために強化学習(RL)を提案する。
論文 参考訳(メタデータ) (2020-05-22T19:00:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。