論文の概要: An Interleaving Semantics of the Timed Concurrent Language for
Argumentation to Model Debates and Dialogue Games
- arxiv url: http://arxiv.org/abs/2306.07675v2
- Date: Fri, 7 Jul 2023 07:37:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 14:54:44.903790
- Title: An Interleaving Semantics of the Timed Concurrent Language for
Argumentation to Model Debates and Dialogue Games
- Title(参考訳): 議論のモデルと対話ゲームのための時間付き並行言語の相互理解のための意味論
- Authors: Stefano Bistarelli, Maria Chiara Meo, Carlo Taticchi
- Abstract要約: エージェント間の同時相互作用をモデル化する言語を提案する。
このような言語は、エージェントが彼らの信念の受容可能性についてコミュニケーションし、推論するために使用する共有メモリを利用する。
知的エージェント間で行われる議論や対話ゲームのようなインタラクションをモデル化するためにどのように使用できるかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time is a crucial factor in modelling dynamic behaviours of intelligent
agents: activities have a determined temporal duration in a real-world
environment, and previous actions influence agents' behaviour. In this paper,
we propose a language for modelling concurrent interaction between agents that
also allows the specification of temporal intervals in which particular actions
occur. Such a language exploits a timed version of Abstract Argumentation
Frameworks to realise a shared memory used by the agents to communicate and
reason on the acceptability of their beliefs with respect to a given time
interval. An interleaving model on a single processor is used for basic
computation steps, with maximum parallelism for time elapsing. Following this
approach, only one of the enabled agents is executed at each moment. To
demonstrate the capabilities of language, we also show how it can be used to
model interactions such as debates and dialogue games taking place between
intelligent agents. Lastly, we present an implementation of the language that
can be accessed via a web interface. Under consideration in Theory and Practice
of Logic Programming (TPLP).
- Abstract(参考訳): 時間(time)は、知的エージェントの動的振る舞いをモデル化する上で重要な要素である: アクティビティは現実世界の環境で決定的な時間持続時間を持ち、以前のアクションはエージェントの振る舞いに影響を与える。
本稿では,エージェント間の同時相互作用をモデル化する言語を提案する。
このような言語は、抽象論証フレームワークのタイムドバージョンを利用して、エージェントが特定の時間間隔に関する信念の受け入れ可能性についてコミュニケーションし、推論するために使用する共有メモリを実現する。
単一プロセッサ上のインターリーブモデルは、時間エリープの最大並列性を持つ基本的な計算ステップに使用される。
このアプローチに従い、有効になったエージェントは各瞬間に1つだけ実行される。
言語の能力を示すために,知的なエージェント間の議論や対話ゲームといったインタラクションのモデル化にも利用できることを示す。
最後に,Webインターフェースを通じてアクセス可能な言語の実装を提案する。
論理プログラミングの理論と実践(tplp)における考察。
関連論文リスト
- Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
並列処理とリアルタイムツール利用が可能な非同期AIエージェントを導入する。
私たちの重要な貢献は、エージェントの実行とプロンプトのためのイベント駆動有限状態マシンアーキテクチャです。
この研究は、流体とマルチタスクの相互作用が可能なAIエージェントを作成するための概念的なフレームワークと実践的なツールの両方を提示している。
論文 参考訳(メタデータ) (2024-10-28T23:57:19Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
モデルに依存しない長期対話エージェント(LD-Agent)を導入する。
イベント認識、ペルソナ抽出、応答生成のための3つの独立した調整可能なモジュールが組み込まれている。
LD-Agentの有効性, 汎用性, クロスドメイン性について実験的に検証した。
論文 参考訳(メタデータ) (2024-06-09T21:58:32Z) - Modeling Real-Time Interactive Conversations as Timed Diarized Transcripts [11.067252960486272]
本稿では,事前学習した言語モデルを用いて,リアルタイム対話型会話をシミュレートする簡易かつ汎用的な手法を提案する。
本稿では,インスタントメッセージ対話と音声会話の2つのケーススタディを用いて,この手法の可能性を実証する。
論文 参考訳(メタデータ) (2024-05-21T21:14:31Z) - Dialogue-based generation of self-driving simulation scenarios using
Large Language Models [14.86435467709869]
シミュレーションは自動運転車のコントローラーを開発し評価するための貴重なツールである。
現在のシミュレーションフレームワークは、高度に専門的なドメイン固有言語によって駆動される。
簡潔な英語の発話と、ユーザの意図をキャプチャする実行可能なコードの間には、しばしばギャップがある。
論文 参考訳(メタデータ) (2023-10-26T13:07:01Z) - Explaining Interactions Between Text Spans [50.70253702800355]
入力の異なる部分からのトークンのスパンに対する推論は、自然言語理解に不可欠である。
NLUタスク2つのタスク(NLIとFC)に対する人間間相互作用の説明データセットであるSpanExを紹介する。
次に,複数の微調整された大言語モデルの決定過程を,スパン間の相互接続の観点から検討する。
論文 参考訳(メタデータ) (2023-10-20T13:52:37Z) - Generative Agents: Interactive Simulacra of Human Behavior [86.1026716646289]
生成エージェントを導入し,人間の振る舞いをシミュレートする計算ソフトウェアエージェントについて紹介する。
エージェントの経験の完全な記録を格納するために,大規模言語モデルを拡張するアーキテクチャについて述べる。
The Simsにインスパイアされた対話型サンドボックス環境に生成エージェントを投入する。
論文 参考訳(メタデータ) (2023-04-07T01:55:19Z) - What A Situated Language-Using Agent Must be Able to Do: A Top-Down
Analysis [16.726800816202033]
テキストが集中する時代になっても、言語の使用の第一の場所は、対話の場であり、共同表現である。
本稿では,非制限位置相互作用が関与エージェントに与える要求について,トップダウン解析を試みる。
論文 参考訳(メタデータ) (2023-02-16T21:30:26Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
本稿では,PrLMの逐次文脈化を超えて,発話間の包括的相互作用のための合成学習を提案する。
私たちは、モデルが対話ドメインに適応するのを助けるために、ドメイン適応型トレーニング戦略を採用しています。
実験の結果,提案手法は4つの公開ベンチマークデータセットにおいて,強力なPrLMベースラインを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-01-10T13:18:25Z) - A Model for Intelligible Interaction Between Agents That Predict and Explain [1.335664823620186]
エージェントを特殊特性を持つオートマチックにすることで相互作用モデルを定式化する。
プロトコルの実行によって実行時に現れるプロパティとして,ワンウェイとツーウェイのインテリジェンスを定義する。
a)インダクティブ論理プログラミング(ILP)で行われているように、論理に基づく説明を提供するMLシステムと対話する人間に関する文献報告における1-および2-Way知能の事例を特定し、(b)1-または2-Way知能に精巧な自然言語に基づく対話モデルで人間と機械間の相互作用をマッピングする。
論文 参考訳(メタデータ) (2023-01-04T20:48:22Z) - CloneBot: Personalized Dialogue-Response Predictions [0.0]
プロジェクトのタスクは、話者id、チャット履歴、発話クエリが与えられた場合に、会話中の応答発話を予測できるモデルを作成することだった。
モデルは各話者にパーソナライズされる。
このタスクは、人間のような方法で会話する音声ボットをライブ会話で構築するのに有用なツールである。
論文 参考訳(メタデータ) (2021-03-31T01:15:37Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。