Time-aware Graph Structure Learning via Sequence Prediction on Temporal
Graphs
- URL: http://arxiv.org/abs/2306.07699v2
- Date: Tue, 15 Aug 2023 09:03:39 GMT
- Title: Time-aware Graph Structure Learning via Sequence Prediction on Temporal
Graphs
- Authors: Haozhen Zhang, Xueting Han, Xi Xiao, Jing Bai
- Abstract summary: We propose a Time-aware Graph Structure Learning (TGSL) approach via sequence prediction on temporal graphs.
In particular, it predicts time-aware context embedding and uses the Gumble-Top-K to select the closest candidate edges to this context embedding.
Experiments on temporal link prediction benchmarks demonstrate that TGSL yields significant gains for the popular TGNs such as TGAT and GraphMixer.
- Score: 10.034072706245544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal Graph Learning, which aims to model the time-evolving nature of
graphs, has gained increasing attention and achieved remarkable performance
recently. However, in reality, graph structures are often incomplete and noisy,
which hinders temporal graph networks (TGNs) from learning informative
representations. Graph contrastive learning uses data augmentation to generate
plausible variations of existing data and learn robust representations.
However, rule-based augmentation approaches may be suboptimal as they lack
learnability and fail to leverage rich information from downstream tasks. To
address these issues, we propose a Time-aware Graph Structure Learning (TGSL)
approach via sequence prediction on temporal graphs, which learns better graph
structures for downstream tasks through adding potential temporal edges. In
particular, it predicts time-aware context embedding based on previously
observed interactions and uses the Gumble-Top-K to select the closest candidate
edges to this context embedding. Additionally, several candidate sampling
strategies are proposed to ensure both efficiency and diversity. Furthermore,
we jointly learn the graph structure and TGNs in an end-to-end manner and
perform inference on the refined graph. Extensive experiments on temporal link
prediction benchmarks demonstrate that TGSL yields significant gains for the
popular TGNs such as TGAT and GraphMixer, and it outperforms other contrastive
learning methods on temporal graphs. We release the code at
https://github.com/ViktorAxelsen/TGSL.
Related papers
- A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
Continual learning on graphs tackles the problem of training a graph neural network (GNN) where graph data arrive in a streaming fashion.
Traditional continual learning strategies such as Experience Replay can be adapted to streaming graphs.
We propose TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning framework.
arXiv Detail & Related papers (2024-01-05T22:22:13Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
We propose a decoupled training method, which includes a graph generating module and a GNNs forecasting module.
First, we use Graphical Lasso (or GraphLASSO) to directly exploit the sparsity pattern from data to build graph structures.
Second, we fit these graph structures and the input data into a Graph Convolutional Recurrent Network (GCRN) to train a forecasting model.
arXiv Detail & Related papers (2023-06-29T16:48:00Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Graph-Free Learning in Graph-Structured Data: A More Efficient and
Accurate Spatiotemporal Learning Perspective [11.301939428860404]
This paper proposes a Graph-Free (SGF) learning module on normalization for capturing spatial correlations in graphtemporal learning.
Rigorous theoretical proof demonstrates that the time complexity is significantly better than that proposed graph convolution operation.
arXiv Detail & Related papers (2023-01-27T14:26:11Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.