Contextual Dictionary Lookup for Knowledge Graph Completion
- URL: http://arxiv.org/abs/2306.07719v1
- Date: Tue, 13 Jun 2023 12:13:41 GMT
- Title: Contextual Dictionary Lookup for Knowledge Graph Completion
- Authors: Jining Wang, Delai Qiu, YouMing Liu, Yining Wang, Chuan Chen, Zibin
Zheng, Yuren Zhou
- Abstract summary: Knowledge graph completion (KGC) aims to solve the incompleteness of knowledge graphs (KGs) by predicting missing links from known triples.
Most existing embedding models map each relation into a unique vector, overlooking the specific fine-grained semantics of them under different entities.
We present a novel method utilizing contextual dictionary lookup, enabling conventional embedding models to learn fine-grained semantics of relations in an end-to-end manner.
- Score: 32.493168863565465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph completion (KGC) aims to solve the incompleteness of
knowledge graphs (KGs) by predicting missing links from known triples, numbers
of knowledge graph embedding (KGE) models have been proposed to perform KGC by
learning embeddings. Nevertheless, most existing embedding models map each
relation into a unique vector, overlooking the specific fine-grained semantics
of them under different entities. Additionally, the few available fine-grained
semantic models rely on clustering algorithms, resulting in limited performance
and applicability due to the cumbersome two-stage training process. In this
paper, we present a novel method utilizing contextual dictionary lookup,
enabling conventional embedding models to learn fine-grained semantics of
relations in an end-to-end manner. More specifically, we represent each
relation using a dictionary that contains multiple latent semantics. The
composition of a given entity and the dictionary's central semantics serves as
the context for generating a lookup, thus determining the fine-grained
semantics of the relation adaptively. The proposed loss function optimizes both
the central and fine-grained semantics simultaneously to ensure their semantic
consistency. Besides, we introduce two metrics to assess the validity and
accuracy of the dictionary lookup operation. We extend several KGE models with
the method, resulting in substantial performance improvements on widely-used
benchmark datasets.
Related papers
- Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - Structure Your Data: Towards Semantic Graph Counterfactuals [1.8817715864806608]
Counterfactual explanations (CEs) based on concepts are explanations that consider alternative scenarios to understand which high-level semantic features contributed to model predictions.
In this work, we propose CEs based on the semantic graphs accompanying input data to achieve more descriptive, accurate, and human-aligned explanations.
arXiv Detail & Related papers (2024-03-11T08:40:37Z) - Multi-perspective Improvement of Knowledge Graph Completion with Large
Language Models [95.31941227776711]
We propose MPIKGC to compensate for the deficiency of contextualized knowledge and improve KGC by querying large language models (LLMs)
We conducted extensive evaluation of our framework based on four description-based KGC models and four datasets, for both link prediction and triplet classification tasks.
arXiv Detail & Related papers (2024-03-04T12:16:15Z) - Schema First! Learn Versatile Knowledge Graph Embeddings by Capturing
Semantics with MASCHInE [3.174882428337821]
Knowledge graph embedding models (KGEMs) have gained considerable traction in recent years.
In this work, we design protographs -- small, modified versions of a KG that leverage RDF/S information.
The learnt protograph-based embeddings are meant to encapsulate the semantics of a KG, and can be leveraged in learning KGEs that, in turn, also better capture semantics.
arXiv Detail & Related papers (2023-06-06T13:22:54Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs.
Due to the diverse visual appearance of numerous possible subject-object combinations, there is a large intra-class variation within each predicate category.
Prototype-based Embedding Network (PE-Net) models entities/predicates with prototype-aligned compact and distinctive representations.
PL is introduced to help PE-Net efficiently learn such entitypredicate matching, and Prototype Regularization (PR) is devised to relieve the ambiguous entity-predicate matching.
arXiv Detail & Related papers (2023-03-13T13:30:59Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain.
We present Graph Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding method that is able to learn domain-invariant semantics from both word sequences and syntactic graphs.
arXiv Detail & Related papers (2022-05-18T07:47:01Z) - Duality-Induced Regularizer for Semantic Matching Knowledge Graph
Embeddings [70.390286614242]
We propose a novel regularizer -- namely, DUality-induced RegulArizer (DURA) -- which effectively encourages the entities with similar semantics to have similar embeddings.
Experiments demonstrate that DURA consistently and significantly improves the performance of state-of-the-art semantic matching models.
arXiv Detail & Related papers (2022-03-24T09:24:39Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Joint Entity and Relation Canonicalization in Open Knowledge Graphs
using Variational Autoencoders [11.259587284318835]
Noun phrases and relation phrases in open knowledge graphs are not canonicalized, leading to an explosion of redundant and ambiguous subject-relation-object triples.
Existing approaches to face this problem take a two-step approach: first, they generate embedding representations for both noun and relation phrases, then a clustering algorithm is used to group them using the embeddings as features.
In this work, we propose Canonicalizing Using Variational AutoEncoders (CUVA), a joint model to learn both embeddings and cluster assignments in an end-to-end approach.
arXiv Detail & Related papers (2020-12-08T22:58:30Z) - Keyphrase Extraction with Dynamic Graph Convolutional Networks and
Diversified Inference [50.768682650658384]
Keyphrase extraction (KE) aims to summarize a set of phrases that accurately express a concept or a topic covered in a given document.
Recent Sequence-to-Sequence (Seq2Seq) based generative framework is widely used in KE task, and it has obtained competitive performance on various benchmarks.
In this paper, we propose to adopt the Dynamic Graph Convolutional Networks (DGCN) to solve the above two problems simultaneously.
arXiv Detail & Related papers (2020-10-24T08:11:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.