ReaLitE: Enrichment of Relation Embeddings in Knowledge Graphs using Numeric Literals
- URL: http://arxiv.org/abs/2504.00852v1
- Date: Tue, 01 Apr 2025 14:38:22 GMT
- Title: ReaLitE: Enrichment of Relation Embeddings in Knowledge Graphs using Numeric Literals
- Authors: Antonis Klironomos, Baifan Zhou, Zhuoxun Zheng, Gad-Elrab Mohamed, Heiko Paulheim, Evgeny Kharlamov,
- Abstract summary: Most knowledge graph embedding (KGE) methods tailored for link prediction focus on the entities and relations in the graph.<n>We propose ReaLitE, a novel relation-centric KGE model that dynamically aggregates and merges entities' numerical attributes with the embeddings of the connecting relations.
- Score: 6.014443576489523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most knowledge graph embedding (KGE) methods tailored for link prediction focus on the entities and relations in the graph, giving little attention to other literal values, which might encode important information. Therefore, some literal-aware KGE models attempt to either integrate numerical values into the embeddings of the entities or convert these numerics into entities during preprocessing, leading to information loss. Other methods concerned with creating relation-specific numerical features assume completeness of numerical data, which does not apply to real-world graphs. In this work, we propose ReaLitE, a novel relation-centric KGE model that dynamically aggregates and merges entities' numerical attributes with the embeddings of the connecting relations. ReaLitE is designed to complement existing conventional KGE methods while supporting multiple variations for numerical aggregations, including a learnable method. We comprehensively evaluated the proposed relation-centric embedding using several benchmarks for link prediction and node classification tasks. The results showed the superiority of ReaLitE over the state of the art in both tasks.
Related papers
- Efficient Relational Context Perception for Knowledge Graph Completion [25.903926643251076]
Knowledge Graphs (KGs) provide a structured representation of knowledge but often suffer from challenges of incompleteness.<n>Previous knowledge graph embedding models are limited in their ability to capture expressive features.<n>We propose Triple Receptance Perception architecture to model sequential information, enabling the learning of dynamic context.
arXiv Detail & Related papers (2024-12-31T11:25:58Z) - Knowledge Graph Embeddings: A Comprehensive Survey on Capturing Relation Properties [5.651919225343915]
Knowledge Graph Embedding (KGE) techniques play a pivotal role in transforming symbolic Knowledge Graphs into numerical representations.<n>This paper addresses the complex mapping properties inherent in relations, such as one-to-one, one-to-many, many-to-one, and many-to-many mappings.<n>We explore innovative ideas such as integrating multimodal information into KGE, enhancing relation pattern modeling with rules, and developing models to capture relation characteristics in dynamic KGE settings.
arXiv Detail & Related papers (2024-10-16T08:54:52Z) - Inference over Unseen Entities, Relations and Literals on Knowledge Graphs [1.7474352892977463]
knowledge graph embedding models have been successfully applied in the transductive setting to tackle various challenging tasks.
We propose the attentive byte-pair encoding layer (BytE) to construct a triple embedding from a sequence of byte-pair encoded subword units of entities and relations.
BytE leads to massive feature reuse via weight tying, since it forces a knowledge graph embedding model to learn embeddings for subword units instead of entities and relations directly.
arXiv Detail & Related papers (2024-10-09T10:20:54Z) - A Comprehensive Study on Knowledge Graph Embedding over Relational
Patterns Based on Rule Learning [49.09125100268454]
Knowledge Graph Embedding (KGE) has proven to be an effective approach to solving the Knowledge Completion Graph (KGC) task.
Relational patterns are an important factor in the performance of KGE models.
We introduce a training-free method to enhance KGE models' performance over various relational patterns.
arXiv Detail & Related papers (2023-08-15T17:30:57Z) - Contextual Dictionary Lookup for Knowledge Graph Completion [32.493168863565465]
Knowledge graph completion (KGC) aims to solve the incompleteness of knowledge graphs (KGs) by predicting missing links from known triples.
Most existing embedding models map each relation into a unique vector, overlooking the specific fine-grained semantics of them under different entities.
We present a novel method utilizing contextual dictionary lookup, enabling conventional embedding models to learn fine-grained semantics of relations in an end-to-end manner.
arXiv Detail & Related papers (2023-06-13T12:13:41Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
We propose a graph-based personalized algorithm (GATTA) for distributed deep learning.
In particular, the personalized model in each agent is composed of a global part and a node-specific part.
By treating each agent as one node in a graph the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited.
arXiv Detail & Related papers (2023-05-22T13:48:30Z) - Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition [4.041834517339835]
We propose a novel knowledge graph that incorporates tensor decomposition within the aggregation function of Graph Conalvolution Network (R-GCN)
Our model enhances the representation of neighboring entities by employing projection matrices of a low-rank tensor defined by relation types.
We adopt a training strategy inspired by contrastive learning to relieve the training limitation of the 1-k-k encoder method inherent in handling vast graphs.
arXiv Detail & Related papers (2022-12-11T19:07:34Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
This paper extends the random walk model (Arora et al., 2016a) of word embeddings to Knowledge Graph Embeddings (KGEs)
We derive a scoring function that evaluates the strength of a relation R between two entities h (head) and t (tail)
We propose a learning objective motivated by the theoretical analysis to learn KGEs from a given knowledge graph.
arXiv Detail & Related papers (2021-01-25T13:31:29Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.