論文の概要: ChatGPT vs Human-authored Text: Insights into Controllable Text
Summarization and Sentence Style Transfer
- arxiv url: http://arxiv.org/abs/2306.07799v1
- Date: Tue, 13 Jun 2023 14:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 13:22:48.953800
- Title: ChatGPT vs Human-authored Text: Insights into Controllable Text
Summarization and Sentence Style Transfer
- Title(参考訳): chatgpt対人著者テキスト:制御可能なテキスト要約と文スタイル変換の考察
- Authors: Dongqi Pu, Vera Demberg
- Abstract要約: 2つの制御可能な生成タスクにおいてChatGPTの性能を体系的に検査する。
生成したテキストの忠実度を評価し、そのモデルの性能を人間によるテキストと比較する。
テキストを特定のスタイルに適合させる際に、ChatGPTは時に事実的誤りや幻覚を取り入れている。
- 参考スコア(独自算出の注目度): 8.64514166615844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale language models, like ChatGPT, have garnered significant media
attention and stunned the public with their remarkable capacity for generating
coherent text from short natural language prompts. In this paper, we aim to
conduct a systematic inspection of ChatGPT's performance in two controllable
generation tasks, with respect to ChatGPT's ability to adapt its output to
different target audiences (expert vs. layman) and writing styles (formal vs.
informal). Additionally, we evaluate the faithfulness of the generated text,
and compare the model's performance with human-authored texts. Our findings
indicate that the stylistic variations produced by humans are considerably
larger than those demonstrated by ChatGPT, and the generated texts diverge from
human samples in several characteristics, such as the distribution of word
types. Moreover, we observe that ChatGPT sometimes incorporates factual errors
or hallucinations when adapting the text to suit a specific style.
- Abstract(参考訳): ChatGPTのような大規模言語モデルはメディアの注目を集め、短い自然言語のプロンプトから一貫性のあるテキストを生成する能力で大衆を驚かせた。
本稿では、ChatGPTの出力を異なるターゲットオーディエンス(エキスパート対レイマン)と書体(形式対非公式)に適応させる能力に関して、2つの制御可能な世代タスクにおいてChatGPTのパフォーマンスを体系的に検査することを目的とする。
さらに、生成したテキストの忠実さを評価し、モデルの性能を人間によるテキストと比較する。
この結果から, 人体が生成する文体変化はChatGPTよりかなり大きく, 生成した文体は, 語型の分布など, 人体試料から分岐していることが明らかとなった。
さらに,ChatGPTは,テキストを特定のスタイルに適合させる際に,事実的誤りや幻覚を取り入れている場合もある。
関連論文リスト
- DEMASQ: Unmasking the ChatGPT Wordsmith [63.8746084667206]
そこで本研究では,ChatGPT生成内容を正確に識別する効果的なChatGPT検出器DEMASQを提案する。
提案手法は, 人為的, 機械的, 人為的, 人為的, 機械的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人為的, 人
論文 参考訳(メタデータ) (2023-11-08T21:13:05Z) - Detecting ChatGPT: A Survey of the State of Detecting ChatGPT-Generated
Text [1.9643748953805937]
生成言語モデルは、人間が生成したように見える人工的なテキストを生成することによって、潜在的に騙される可能性がある。
この調査は、人間が生成したテキストとChatGPTを区別するために使われている現在のアプローチの概要を提供する。
論文 参考訳(メタデータ) (2023-09-14T13:05:20Z) - Is ChatGPT Involved in Texts? Measure the Polish Ratio to Detect
ChatGPT-Generated Text [48.36706154871577]
我々はHPPT(ChatGPT-polished academic abstracts)と呼ばれる新しいデータセットを紹介する。
純粋なChatGPT生成テキストの代わりに、人書きとChatGPTポリケートされた抽象文のペアを構成することで、既存のコーパスから分岐する。
また,ChatGPTによる修正の度合いを,オリジナルの人文テキストと比較した革新的な尺度であるPolish Ratio法を提案する。
論文 参考訳(メタデータ) (2023-07-21T06:38:37Z) - GPT-Sentinel: Distinguishing Human and ChatGPT Generated Content [27.901155229342375]
本稿では,言語モデルを用いたChatGPT生成対人文テキストの検出手法を提案する。
テストデータセットの精度は97%以上で,さまざまな指標から評価した。
論文 参考訳(メタデータ) (2023-05-13T17:12:11Z) - AI, write an essay for me: A large-scale comparison of human-written
versus ChatGPT-generated essays [66.36541161082856]
ChatGPTや同様の生成AIモデルは、何億人ものユーザーを惹きつけている。
本研究は,ChatGPTが生成した議論的学生エッセイと比較した。
論文 参考訳(メタデータ) (2023-04-24T12:58:28Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - Comparing Abstractive Summaries Generated by ChatGPT to Real Summaries
Through Blinded Reviewers and Text Classification Algorithms [0.8339831319589133]
OpenAIが開発したChatGPTは、言語モデルのファミリに最近追加されたものだ。
自動メトリクスと視覚障害者による抽象要約におけるChatGPTの性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:28:33Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z) - ChatGPT or Human? Detect and Explain. Explaining Decisions of Machine
Learning Model for Detecting Short ChatGPT-generated Text [2.0378492681344493]
機械学習モデルを効果的に訓練することにより、本来の人間と一見人間(すなわちChatGPT生成)のテキストを正確に区別できるかどうかを検討する。
我々は、ChatGPT生成テキストと人文生成テキストを区別するために訓練されたモデルの背後にある理由を理解するために、説明可能な人工知能フレームワークを使用している。
本研究は,人間生成テキストとChatGPT生成テキストを比較した2つの実験を行い,短いオンラインレビューに焦点を当てた。
論文 参考訳(メタデータ) (2023-01-30T08:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。