Sideband thermometry of ion crystals
- URL: http://arxiv.org/abs/2306.07880v3
- Date: Wed, 18 Oct 2023 13:59:18 GMT
- Title: Sideband thermometry of ion crystals
- Authors: Ivan Vybornyi, Laura S. Dreissen, Dominik Kiesenhofer, Helene Hainzer,
Matthias Bock, Tuomas Ollikainen, Daniel Vadlejch, Christian F. Roos, Tanja
E. Mehlst\"aubler, Klemens Hammerer
- Abstract summary: We present a new thermometry method tailored for ion crystals.
It does not suffer from a computational bottleneck when applied to large ion crystals.
Results show that the new method is an accurate and efficient tool for thermometry of ion crystals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coulomb crystals of cold trapped ions are a leading platform for the
realisation of quantum processors and quantum simulations and, in quantum
metrology, for the construction of optical atomic clocks and for fundamental
tests of the Standard Model. For these applications, it is not only essential
to cool the ion crystal in all its degrees of freedom down to the quantum
ground state, but also to be able to determine its temperature with a high
accuracy. However, when a large ground-state cooled crystal is interrogated for
thermometry, complex many-body interactions take place, making it challenging
to accurately estimate the temperature with established techniques. In this
work we present a new thermometry method tailored for ion crystals. The method
is applicable to all normal modes of motion and does not suffer from a
computational bottleneck when applied to large ion crystals. We test the
temperature estimate with two experiments, namely with a 1D linear chain of 4
ions and a 2D crystal of 19 ions and verify the results, where possible, using
other methods. The results show that the new method is an accurate and
efficient tool for thermometry of ion crystals.
Related papers
- Thermometry of Trapped Ions Based on Bichromatic Driving [10.452541695685712]
A thermometry method based on bichromatic driving was theoretically proposed by Ivan Vybornyi et al.
We provide a detailed statistical analysis of this method and prove its robustness to several imperfect experimental conditions.
Our theoretical analysis and experimental verification demonstrate that the scheme can accurately and efficiently measure the temperature in ion crystals.
arXiv Detail & Related papers (2024-07-21T14:46:57Z) - Numerical Simulations of 3D Ion Crystal Dynamics in a Penning Trap using the Fast Multipole Method [0.0]
We simulate the dynamics, including laser cooling, of 3D ion crystals confined in a Penning trap.
We show that the simulation time scales linearly with ion number, rather than with the square of the ion number.
arXiv Detail & Related papers (2024-05-22T20:17:28Z) - Indirect Cooling of Weakly Coupled Trapped-Ion Mechanical Oscillators [0.0]
Cooling the motion of trapped ions to near the quantum ground state is crucial for many applications in quantum information processing.
We overcome this challenge by coupling a mode with weak cooling radiation interaction to one with strong cooling radiation interaction.
We demonstrate near-ground-state cooling of motional modes with weak or zero cooling radiation interaction in multi-ion crystals of the same and mixed ion species.
arXiv Detail & Related papers (2023-08-09T18:00:54Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Controlling two-dimensional Coulomb crystals of more than 100 ions in a
monolithic radio-frequency trap [0.0]
We present experiments with planar Coulomb crystals of about 100 $40$Ca$+$ ions in a novel monolithic radio-frequency trap.
We characterize the trapping potential by analysis of crystal images and compare the observed crystal configurations with numerical simulations.
arXiv Detail & Related papers (2023-02-01T16:38:11Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Double-EIT Ground-State Cooling of Stationary Two-Dimensional Ion
Lattices [13.151113218912656]
We experimentally investigate double electromagnetically induced transparency (double-EIT) cooling of two-dimensional ion crystals confined in a Paul trap.
The double-EIT groundstate cooling is observed for Yb ions with clock state, for which EIT cooling has not been realized like many other ions with a simple $Lambda$-scheme.
This method can be extended to other hyperfine qubits, and near ground-state cooling of stationary 2D crystals with large numbers of ions may advance the field of quantum information sciences.
arXiv Detail & Related papers (2020-03-23T13:42:35Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Reservoir engineering with arbitrary temperatures for spin systems and
quantum thermal machine with maximum efficiency [50.591267188664666]
Reservoir engineering is an important tool for quantum information science and quantum thermodynamics.
We employ this technique to engineer reservoirs with arbitrary (effective) negative and positive temperatures for a single spin system.
arXiv Detail & Related papers (2020-01-28T00:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.