論文の概要: Dark Web Activity Classification Using Deep Learning
- arxiv url: http://arxiv.org/abs/2306.07980v3
- Date: Sat, 1 Jul 2023 16:49:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-04 12:32:38.312113
- Title: Dark Web Activity Classification Using Deep Learning
- Title(参考訳): 深層学習を用いたダークウェブ活動分類
- Authors: Ali Fayzi, Mohammad Fayzi, Kourosh Dadashtabar Ahmadi
- Abstract要約: ダークウェブ上でのアクティビティのタイトルを検出するためにディープラーニングを利用する検索エンジンを提案する。
我々は、麻薬取引、武器取引、盗まれた銀行カードの販売、偽のIDの販売、違法通貨の販売を含む5つのカテゴリに焦点をあてる。
本研究の目的は、Webサイトから「.onion」拡張で関連画像を抽出し、ページのテキストからキーワードを抽出することで、画像のないWebサイトのタイトルを識別することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In contemporary times, people rely heavily on the internet and search engines
to obtain information, either directly or indirectly. However, the information
accessible to users constitutes merely 4% of the overall information present on
the internet, which is commonly known as the surface web. The remaining
information that eludes search engines is called the deep web. The deep web
encompasses deliberately hidden information, such as personal email accounts,
social media accounts, online banking accounts, and other confidential data.
The deep web contains several critical applications, including databases of
universities, banks, and civil records, which are off-limits and illegal to
access. The dark web is a subset of the deep web that provides an ideal
platform for criminals and smugglers to engage in illicit activities, such as
drug trafficking, weapon smuggling, selling stolen bank cards, and money
laundering. In this article, we propose a search engine that employs deep
learning to detect the titles of activities on the dark web. We focus on five
categories of activities, including drug trading, weapon trading, selling
stolen bank cards, selling fake IDs, and selling illegal currencies. Our aim is
to extract relevant images from websites with a ".onion" extension and identify
the titles of websites without images by extracting keywords from the text of
the pages. Furthermore, we introduce a dataset of images called Darkoob, which
we have gathered and used to evaluate our proposed method. Our experimental
results demonstrate that the proposed method achieves an accuracy rate of 94%
on the test dataset.
- Abstract(参考訳): 現代では、人々は直接的または間接的に、情報を得るためにインターネットや検索エンジンに大きく依存している。
しかし、ユーザからアクセス可能な情報は、インターネット上の全情報のわずか4%に過ぎず、一般にサーフェスウェブとして知られている。
検索エンジンから抜け出す残りの情報はdeep webと呼ばれる。
deep webは、個人メールアカウント、ソーシャルメディアアカウント、オンライン銀行口座、その他の機密データなど、意図的に隠された情報を包含している。
ディープウェブには、大学、銀行、市民記録のデータベースを含むいくつかの重要なアプリケーションが含まれており、それらはオフリミットであり、アクセスが違法である。
ダークウェブはディープウェブのサブセットであり、犯罪者や密輸業者が麻薬密売、武器密輸、盗まれた銀行カードの販売、マネーロンダリングなどの違法行為を行うのに理想的なプラットフォームを提供する。
本稿では,ダークウェブ上での活動のタイトルを検出するためにディープラーニングを利用する検索エンジンを提案する。
薬物取引、武器取引、盗まれた銀行カードの販売、偽のIDの販売、違法通貨の販売を含む5つのカテゴリに焦点をあてる。
本研究の目的は、Webサイトから「.onion」拡張で関連画像を抽出し、ページのテキストからキーワードを抽出することで、画像のないWebサイトのタイトルを識別することである。
さらに,提案手法の評価に使用したDarkoob画像のデータセットについても紹介した。
実験の結果,提案手法はテストデータセット上で94%の精度が得られることがわかった。
関連論文リスト
- How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
ブラウザのフィンガープリントは、クッキーを使わずとも、Web上のユーザを識別し、追跡するために利用できる。
この技術と結果として生じるプライバシーリスクは10年以上にわたって研究されてきた。
我々は、さらなる研究を可能にするファースト・オブ・ザ・キンド・データセットを提供する。
論文 参考訳(メタデータ) (2024-10-09T14:51:58Z) - Phishing Website Detection Using a Combined Model of ANN and LSTM [0.9208007322096533]
フィッシング(英: phishing)とは、コンピュータユーザーの個人情報を盗むためのサイバー犯罪の一種である。
攻撃者は、コンピュータのユーザに対する詐欺行為のために、アカウントID、パスワード、ユーザー名などの個人情報を使用した。
この問題を解決するために研究者たちは、機械学習とディープラーニングのアプローチに焦点を当てた。
論文 参考訳(メタデータ) (2024-03-24T14:46:02Z) - The Devil Behind the Mirror: Tracking the Campaigns of Cryptocurrency Abuses on the Dark Web [39.96427593096699]
不正なブロックチェーンアドレスが1,189件ある2,564の違法サイトを特定します。
私たちの調査は、ダークウェブにおける不正な活動には強い相関関係があることを示唆しており、新たな不正なブロックチェーンアドレスと玉ねぎを識別するためのガイドになります。
論文 参考訳(メタデータ) (2024-01-09T16:35:25Z) - When the Few Outweigh the Many: Illicit Content Recognition with
Few-Shot Learning [0.0]
本稿では,画像から違法行為を認識するための代替手法について検討する。
シームズニューラルネットワークは10クラスのデータセット上で20ショットの実験で90.9%に達する。
論文 参考訳(メタデータ) (2023-11-28T18:28:03Z) - Identifying key players in dark web marketplaces [58.720142291102135]
この論文は、暗黒市場に関連するBitcoin取引ネットワークのキープレーヤーを特定することを目的としている。
取引量の大部分は、エリート市場参加者の小さなグループに集中していることを示す。
ダークウェブのマーケットプレースにおけるキープレーヤーの行動を理解することは、違法行為を効果的に破壊するために重要であることを示唆している。
論文 参考訳(メタデータ) (2023-06-15T20:30:43Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
我々は、教師付き学習を活用する、オンラインプライバシ保護に対するインテリジェントなアプローチを設計する。
ユーザのプライバシを侵害する可能性のあるデータ収集を検出してブロックすることにより、ユーザに対してある程度のディジタルプライバシを復元することが可能になります。
論文 参考訳(メタデータ) (2023-04-06T05:20:16Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
近年のディープラーニング、特に深層生成モデルの発展により、知覚的に説得力のある画像や動画を低コストで制作するための扉が開かれた。
本稿では,現在のメディアタンパリング検出手法を概観し,今後の研究の課題と動向について論じる。
論文 参考訳(メタデータ) (2022-12-12T02:54:08Z) - VeriDark: A Large-Scale Benchmark for Authorship Verification on the
Dark Web [25.00969884543201]
VeriDarkは3つの大規模オーサシップ検証データセットと1つのオーサシップ識別データセットで構成されるベンチマークです。
3つのデータセット上での競合NLPベースラインの評価を行い、これらのアプローチの限界をよりよく理解するために予測の解析を行う。
論文 参考訳(メタデータ) (2022-07-07T17:57:11Z) - A Crawler Architecture for Harvesting the Clear, Social, and Dark Web
for IoT-Related Cyber-Threat Intelligence [1.1661238776379117]
クリアでソーシャルでダークなWebは最近、貴重なサイバーセキュリティ情報の豊富な情報源として特定されている。
我々は、クリアウェブのセキュリティウェブサイト、ソーシャルウェブのセキュリティフォーラム、ダークウェブのハッカーフォーラム/マーケットプレースからデータを透過的に収集する新しいクローリングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-09-14T19:26:08Z) - Lighting the Darkness in the Deep Learning Era [118.35081853500411]
低照度画像強調(LLIE)は、照明の弱い環境で撮影された画像の知覚や解釈性を改善することを目的としている。
この分野における最近の進歩は、ディープラーニングベースのソリューションが支配的です。
アルゴリズム分類から未解決の未解決問題まで,さまざまな側面をカバーする包括的な調査を行う。
論文 参考訳(メタデータ) (2021-04-21T19:12:19Z) - Improving Object Detection with Selective Self-supervised Self-training [62.792445237541145]
本研究では,Web画像を利用した人為的対象検出データセットの強化について検討する。
画像と画像の検索によりWebイメージを検索し、他の検索手法に比べて、キュレートされたデータからのドメインシフトが少なくなる。
画像分類のためのラベルのないデータを探索する2つの並列処理をモチベーションとした新しい学習手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T18:05:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。