Leveraging dendritic properties to advance machine learning and
neuro-inspired computing
- URL: http://arxiv.org/abs/2306.08007v1
- Date: Tue, 13 Jun 2023 09:07:49 GMT
- Title: Leveraging dendritic properties to advance machine learning and
neuro-inspired computing
- Authors: Michalis Pagkalos, Roman Makarov and Panayiota Poirazi
- Abstract summary: Brain is a remarkably capable and efficient system.
Current artificial intelligence systems require vast resources for training while still struggling to compete in tasks that are trivial for biological agents.
Brain-inspired engineering has emerged as a promising new avenue for designing sustainable, next-generation AI systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The brain is a remarkably capable and efficient system. It can process and
store huge amounts of noisy and unstructured information using minimal energy.
In contrast, current artificial intelligence (AI) systems require vast
resources for training while still struggling to compete in tasks that are
trivial for biological agents. Thus, brain-inspired engineering has emerged as
a promising new avenue for designing sustainable, next-generation AI systems.
Here, we describe how dendritic mechanisms of biological neurons have inspired
innovative solutions for significant AI problems, including credit assignment
in multilayer networks, catastrophic forgetting, and high energy consumption.
These findings provide exciting alternatives to existing architectures, showing
how dendritic research can pave the way for building more powerful and
energy-efficient artificial learning systems.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Towards Reverse-Engineering the Brain: Brain-Derived Neuromorphic Computing Approach with Photonic, Electronic, and Ionic Dynamicity in 3D integrated circuits [2.649646793770068]
The human brain has immense learning capabilities at extreme energy efficiencies and scale that no artificial system has been able to match.
This paper argues the possibility of reverse-engineering the brain through architecting a prototype of a brain-derived neuromorphic computing system.
arXiv Detail & Related papers (2024-03-28T05:24:04Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective [0.0]
We present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI)
In this report, we present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI)
arXiv Detail & Related papers (2023-10-14T13:17:58Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Brain-inspired learning in artificial neural networks: a review [5.064447369892274]
We review current brain-inspired learning representations in artificial neural networks.
We investigate the integration of more biologically plausible mechanisms, such as synaptic plasticity, to enhance these networks' capabilities.
arXiv Detail & Related papers (2023-05-18T18:34:29Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
More brain-like capacities may demand new theories, models, and methods for designing artificial learning systems.
This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
arXiv Detail & Related papers (2021-05-15T19:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.