Curatr: A Platform for Semantic Analysis and Curation of Historical
Literary Texts
- URL: http://arxiv.org/abs/2306.08020v1
- Date: Tue, 13 Jun 2023 15:15:31 GMT
- Title: Curatr: A Platform for Semantic Analysis and Curation of Historical
Literary Texts
- Authors: Susan Leavy, Gerardine Meaney, Karen Wade and Derek Greene
- Abstract summary: This paper presents Curatr, an online platform for the exploration and curation of literature with machine learning-supported semantic search.
The platform combines neural word embeddings with expert domain knowledge to enable the generation of thematic lexicons.
- Score: 5.075506385456811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing availability of digital collections of historical and
contemporary literature presents a wealth of possibilities for new research in
the humanities. The scale and diversity of such collections however, presents
particular challenges in identifying and extracting relevant content. This
paper presents Curatr, an online platform for the exploration and curation of
literature with machine learning-supported semantic search, designed within the
context of digital humanities scholarship. The platform provides a text mining
workflow that combines neural word embeddings with expert domain knowledge to
enable the generation of thematic lexicons, allowing researches to curate
relevant sub-corpora from a large corpus of 18th and 19th century digitised
texts.
Related papers
- Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Semantic Similarity Measure of Natural Language Text through Machine
Learning and a Keyword-Aware Cross-Encoder-Ranking Summarizer -- A Case Study
Using UCGIS GIS&T Body of Knowledge [2.4909170697740968]
GIS&T Body of Knowledge (BoK) is a community-driven endeavor to define, develop, and document geospatial topics.
This research evaluates the effectiveness of multiple natural language processing (NLP) techniques in extracting semantics from text.
It also offers a new perspective on the use of machine learning techniques for analyzing scientific publications.
arXiv Detail & Related papers (2023-05-17T01:17:57Z) - A Survey of Text Representation Methods and Their Genealogy [0.0]
In recent years, with the advent of highly scalable artificial-neural-network-based text representation methods the field of natural language processing has seen unprecedented growth and sophistication.
We provide a survey of current approaches, by arranging them in a genealogy, and by conceptualizing a taxonomy of text representation methods to examine and explain the state-of-the-art.
arXiv Detail & Related papers (2022-11-26T15:22:01Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
multimodal machine learning that incorporates data from various sources has become an increasingly popular research area.
We analyze the commonness and uniqueness of each data format mainly ranging from vision, audio, text, and motions.
We investigate the existing literature on multimodal learning from both the representation learning and downstream application levels.
arXiv Detail & Related papers (2022-10-05T13:14:57Z) - Latin writing styles analysis with Machine Learning: New approach to old
questions [0.0]
In the Middle Ages texts were learned by heart and spread using oral means of communication from generation to generation.
Taking into account such a specific construction of literature composed in Latin, we can search for and indicate the probability patterns of familiar sources of specific narrative texts.
arXiv Detail & Related papers (2021-09-01T20:21:45Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
We introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature.
We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.
arXiv Detail & Related papers (2020-10-30T19:12:25Z) - Quasi Error-free Text Classification and Authorship Recognition in a
large Corpus of English Literature based on a Novel Feature Set [0.0]
We show that in the entire GLEC quasi error-free text classification and authorship recognition is possible with a method using the same set of five style and five content features.
Our data pave the way for many future computational and empirical studies of literature or experiments in reading psychology.
arXiv Detail & Related papers (2020-10-21T07:39:55Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
This paper surveys the components of modeling approaches relaying task impacts across various generation tasks such as storytelling, summarization, translation etc.
We present an abstraction of the imperative techniques with respect to learning paradigms, pretraining, modeling approaches, decoding and the key challenges outstanding in the field in each of them.
arXiv Detail & Related papers (2020-10-14T17:54:42Z) - A Survey of Knowledge-Enhanced Text Generation [81.24633231919137]
The goal of text generation is to make machines express in human language.
Various neural encoder-decoder models have been proposed to achieve the goal by learning to map input text to output text.
To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models.
arXiv Detail & Related papers (2020-10-09T06:46:46Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
The last decade has seen a surge of research in this area due to the unprecedented success of deep learning.
This paper fills the gap by reviewing the state-of-the-art approaches from 1961 to 2021.
We create a taxonomy for text classification according to the text involved and the models used for feature extraction and classification.
arXiv Detail & Related papers (2020-08-02T00:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.