論文の概要: Graph Structure and Feature Extrapolation for Out-of-Distribution
Generalization
- arxiv url: http://arxiv.org/abs/2306.08076v1
- Date: Tue, 13 Jun 2023 18:46:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 23:00:41.867103
- Title: Graph Structure and Feature Extrapolation for Out-of-Distribution
Generalization
- Title(参考訳): 分布外一般化のためのグラフ構造と特徴補間
- Authors: Xiner Li, Shurui Gui, Youzhi Luo, Shuiwang Ji
- Abstract要約: アウト・オブ・ディストリビューション(OOD)の一般化は、テスト分布がトレーニング分布からシフトする一般的な学習シナリオを扱う。
我々は,非ユークリッド空間線型補間の新しい設計により,グラフOOD一般化を実現することを提案する。
我々の設計は、根底にある因果機構を損なうことなく、OODサンプルを特定のシフトのために調整する。
- 参考スコア(独自算出の注目度): 37.89042347003644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) generalization deals with the prevalent learning
scenario where test distribution shifts from training distribution. With rising
application demands and inherent complexity, graph OOD problems call for
specialized solutions. While data-centric methods exhibit performance
enhancements on many generic machine learning tasks, there is a notable absence
of data augmentation methods tailored for graph OOD generalization. In this
work, we propose to achieve graph OOD generalization with the novel design of
non-Euclidean-space linear extrapolation. The proposed augmentation strategy
extrapolates both structure and feature spaces to generate OOD graph data. Our
design tailors OOD samples for specific shifts without corrupting underlying
causal mechanisms. Theoretical analysis and empirical results evidence the
effectiveness of our method in solving target shifts, showing substantial and
constant improvements across various graph OOD tasks.
- Abstract(参考訳): アウト・オブ・ディストリビューション(OOD)の一般化は、テスト分布がトレーニング分布からシフトする一般的な学習シナリオを扱う。
アプリケーション要求の増大と固有の複雑さにより、グラフOOD問題は特殊なソリューションを必要とします。
データ中心の手法は、多くの汎用機械学習タスクのパフォーマンス向上を示すが、グラフOODの一般化に適したデータ拡張手法が特に存在しない。
本研究では,非ユークリッド空間線型外挿法の設計により,グラフOOD一般化を実現することを提案する。
提案手法は,OODグラフデータを生成するために,構造空間と特徴空間の両方を外挿する。
我々の設計は、根底にある因果機構を損なうことなく、OODサンプルを特定のシフトのために調整する。
理論解析と実験の結果から, 対象シフトの解法の有効性が示され, 様々なグラフoodタスクにおいて有意かつ定常的に改善がみられた。
関連論文リスト
- Subgraph Aggregation for Out-of-Distribution Generalization on Graphs [29.884717215947745]
グラフニューラルネットワーク(GNN)におけるアウト・オブ・ディストリビューション(OOD)の一般化は注目されている。
多様なサブグラフの集合を学習するために設計された新しいフレームワークSubGraph Aggregation(SuGAr)を提案する。
合成データセットと実世界のデータセットの両方の実験では、SuGArが最先端の手法より優れていることが示されている。
論文 参考訳(メタデータ) (2024-10-29T16:54:37Z) - A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
我々は,分散シフト下での深層グラフ学習について,最新かつ先見的なレビューを行う。
具体的には,グラフ OOD 一般化,トレーニング時グラフ OOD 適応,テスト時グラフ OOD 適応の3つのシナリオについて述べる。
文献の理解を深めるために,提案した分類に基づく既存モデルを体系的に分類した。
論文 参考訳(メタデータ) (2024-10-25T02:39:56Z) - Bridging OOD Detection and Generalization: A Graph-Theoretic View [21.84304334604601]
OODの一般化と検出の両問題に対処するためのグラフ理論フレームワークを提案する。
グラフ定式化を利用すると、グラフの隣接行列の分解によってデータ表現が得られる。
経験的結果は既存の手法と比較して競争性能を示す。
論文 参考訳(メタデータ) (2024-09-26T18:35:51Z) - HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection [78.47008997035158]
グラフデータはより多様性を示すが、摂動に対する堅牢性は低く、外れ値の統合を複雑にする。
我々は、グラフOOD検出性能を改善するために、textbfHybrid外部および内部の textbfGraph textbfOutlier textbfExposure (HGOE) の導入を提案する。
論文 参考訳(メタデータ) (2024-07-31T16:55:18Z) - Investigating Out-of-Distribution Generalization of GNNs: An
Architecture Perspective [45.352741792795186]
グラフ自己アテンション機構と疎結合アーキテクチャはグラフOOD一般化に肯定的に寄与することを示す。
我々は,グラフ自己保持機構と疎結合アーキテクチャの両方の堅牢性を活用するために,新しいGNNバックボーンモデルDGATを開発した。
論文 参考訳(メタデータ) (2024-02-13T05:38:45Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
我々は,OODグラフを検出するための新しいグラフコントラスト学習フレームワークGOOD-Dを開発した。
GOOD-Dは、潜在IDパターンをキャプチャし、異なる粒度のセマンティック不整合に基づいてOODグラフを正確に検出することができる。
教師なしグラフレベルのOOD検出における先駆的な研究として,提案手法と最先端手法を比較した総合的なベンチマークを構築した。
論文 参考訳(メタデータ) (2022-11-08T12:41:58Z) - Invariance Principle Meets Out-of-Distribution Generalization on Graphs [66.04137805277632]
グラフの複素性質は、OOD一般化の不変原理の採用を妨げている。
OODメソッドでしばしば必要とされるドメインや環境のパーティションは、グラフを得るために取得するのにコストがかかる。
コントラスト戦略を用いて,このプロセスを明確にモデル化する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-11T04:38:39Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。