論文の概要: HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2407.21742v1
- Date: Wed, 31 Jul 2024 16:55:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 17:31:11.891616
- Title: HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection
- Title(参考訳): HGOE: グラフアウトオブディストリビューション検出のためのハイブリッド外部および内部グラフアウトラヤ露光
- Authors: Junwei He, Qianqian Xu, Yangbangyan Jiang, Zitai Wang, Yuchen Sun, Qingming Huang,
- Abstract要約: グラフデータはより多様性を示すが、摂動に対する堅牢性は低く、外れ値の統合を複雑にする。
我々は、グラフOOD検出性能を改善するために、textbfHybrid外部および内部の textbfGraph textbfOutlier textbfExposure (HGOE) の導入を提案する。
- 参考スコア(独自算出の注目度): 78.47008997035158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the progressive advancements in deep graph learning, out-of-distribution (OOD) detection for graph data has emerged as a critical challenge. While the efficacy of auxiliary datasets in enhancing OOD detection has been extensively studied for image and text data, such approaches have not yet been explored for graph data. Unlike Euclidean data, graph data exhibits greater diversity but lower robustness to perturbations, complicating the integration of outliers. To tackle these challenges, we propose the introduction of \textbf{H}ybrid External and Internal \textbf{G}raph \textbf{O}utlier \textbf{E}xposure (HGOE) to improve graph OOD detection performance. Our framework involves using realistic external graph data from various domains and synthesizing internal outliers within ID subgroups to address the poor robustness and presence of OOD samples within the ID class. Furthermore, we develop a boundary-aware OE loss that adaptively assigns weights to outliers, maximizing the use of high-quality OOD samples while minimizing the impact of low-quality ones. Our proposed HGOE framework is model-agnostic and designed to enhance the effectiveness of existing graph OOD detection models. Experimental results demonstrate that our HGOE framework can significantly improve the performance of existing OOD detection models across all 8 real datasets.
- Abstract(参考訳): ディープグラフ学習の進歩に伴い、グラフデータのアウト・オブ・ディストリビューション(OOD)検出が重要な課題となっている。
OOD検出における補助的データセットの有効性は画像データやテキストデータでは広く研究されているが、グラフデータではそのようなアプローチが検討されていない。
ユークリッドのデータとは異なり、グラフデータはより多様性を示すが、摂動に対する堅牢性は低く、外れ値の統合を複雑にする。
これらの課題に対処するために、グラフOOD検出性能を改善するために、内的および内的 \textbf{G}raph \textbf{O}utlier \textbf{E}xposure (HGOE) の導入を提案する。
本フレームワークでは,各種ドメインからのリアルな外部グラフデータの利用と,IDサブグループ内の内部外部値の合成により,IDクラス内のOODサンプルのロバスト性や存在感に対処する。
さらに,高品質なOODサンプルの使用を最大化しつつ,低品質なOODサンプルの影響を最小限に抑えつつ,重みを外れ値に適応的に割り当てる境界認識型OE損失を開発した。
提案するHGOEフレームワークはモデルに依存しず,既存のグラフOOD検出モデルの有効性を高めるために設計されている。
実験結果から,HGOEフレームワークは,既存のOOD検出モデルの性能を大幅に向上させることができることがわかった。
関連論文リスト
- Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark [73.58840254552656]
近年,非教師付きグラフレベルの異常検出(GLAD)と教師なしグラフレベルのアウト・オブ・ディストリビューション(OOD)検出が注目されている。
教師なしグラフレベルのOODと異常検出のための統一ベンチマーク(我々の方法)を提案する。
我々のベンチマークでは、4つの実用的な異常とOOD検出シナリオにまたがる35のデータセットを網羅している。
我々は,既存手法の有効性,一般化性,堅牢性,効率性について多次元解析を行った。
論文 参考訳(メタデータ) (2024-06-21T04:07:43Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
グラフニューラルネットワーク(GNN)は、さまざまな領域にわたるグラフデータのモデリングに広く応用されている。
近年の研究では、特定のモデルのトレーニングや、よく訓練されたGNN上でのデータ修正に重点を置いて、OOD検出のグラフを調査している。
本稿では、GNNアーキテクチャのトレーニングデータと修正から独立して動作する、データ中心、教師なし、プラグアンドプレイのソリューションを提案する。
論文 参考訳(メタデータ) (2024-01-10T08:37:39Z) - Open-World Lifelong Graph Learning [7.535219325248997]
オープンワールドシナリオにおける生涯グラフ学習の課題について検討する。
我々は、新しいクラスを認識するために、out-of-Distribution (OOD) 検出手法を利用する。
我々は,OOD検出手法とグラフ近傍から収集した情報を組み合わせることで,新しいクラス検出を行うことを提案する。
論文 参考訳(メタデータ) (2023-10-19T08:18:10Z) - Graph Structure and Feature Extrapolation for Out-of-Distribution Generalization [54.64375566326931]
アウト・オブ・ディストリビューション(OOD)の一般化は、テスト分布がトレーニング分布からシフトする一般的な学習シナリオを扱う。
我々は,非ユークリッド空間線型補間の新しい設計により,グラフOOD一般化を実現することを提案する。
我々の設計は、根底にある因果機構を損なうことなく、OODサンプルを特定のシフトのために調整する。
論文 参考訳(メタデータ) (2023-06-13T18:46:28Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
我々は,OODグラフを検出するための新しいグラフコントラスト学習フレームワークGOOD-Dを開発した。
GOOD-Dは、潜在IDパターンをキャプチャし、異なる粒度のセマンティック不整合に基づいてOODグラフを正確に検出することができる。
教師なしグラフレベルのOOD検出における先駆的な研究として,提案手法と最先端手法を比較した総合的なベンチマークを構築した。
論文 参考訳(メタデータ) (2022-11-08T12:41:58Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。