Graph Structure and Feature Extrapolation for Out-of-Distribution Generalization
- URL: http://arxiv.org/abs/2306.08076v2
- Date: Wed, 5 Jun 2024 01:41:31 GMT
- Title: Graph Structure and Feature Extrapolation for Out-of-Distribution Generalization
- Authors: Xiner Li, Shurui Gui, Youzhi Luo, Shuiwang Ji,
- Abstract summary: Out-of-distribution (OOD) generalization deals with the prevalent learning scenario where test distribution shifts from training distribution.
We propose to achieve graph OOD generalization with the novel design of non-Euclidean-space linear extrapolation.
Our design tailors OOD samples for specific shifts without corrupting underlying causal mechanisms.
- Score: 54.64375566326931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) generalization deals with the prevalent learning scenario where test distribution shifts from training distribution. With rising application demands and inherent complexity, graph OOD problems call for specialized solutions. While data-centric methods exhibit performance enhancements on many generic machine learning tasks, there is a notable absence of data augmentation methods tailored for graph OOD generalization. In this work, we propose to achieve graph OOD generalization with the novel design of non-Euclidean-space linear extrapolation. The proposed augmentation strategy extrapolates both structure and feature spaces to generate OOD graph data. Our design tailors OOD samples for specific shifts without corrupting underlying causal mechanisms. Theoretical analysis and empirical results evidence the effectiveness of our method in solving target shifts, showing substantial and constant improvements across various graph OOD tasks.
Related papers
- Subgraph Aggregation for Out-of-Distribution Generalization on Graphs [29.884717215947745]
Out-of-distribution (OOD) generalization in Graph Neural Networks (GNNs) has gained significant attention.
We propose a novel framework, SubGraph Aggregation (SuGAr), designed to learn a diverse set of subgraphs.
Experiments on both synthetic and real-world datasets demonstrate that SuGAr outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-10-29T16:54:37Z) - A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
We provide an up-to-date and forward-looking review of deep graph learning under distribution shifts.
Specifically, we cover three primary scenarios: graph OOD generalization, training-time graph OOD adaptation, and test-time graph OOD adaptation.
To provide a better understanding of the literature, we systematically categorize the existing models based on our proposed taxonomy.
arXiv Detail & Related papers (2024-10-25T02:39:56Z) - Bridging OOD Detection and Generalization: A Graph-Theoretic View [21.84304334604601]
We introduce a graph-theoretic framework to tackle both OOD generalization and detection problems.
By leveraging the graph formulation, data representations are obtained through the factorization of the graph's adjacency matrix.
Empirical results showcase competitive performance in comparison to existing methods.
arXiv Detail & Related papers (2024-09-26T18:35:51Z) - HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection [78.47008997035158]
Graph data exhibits greater diversity but lower robustness to perturbations, complicating the integration of outliers.
We propose the introduction of textbfHybrid External and Internal textbfGraph textbfOutlier textbfExposure (HGOE) to improve graph OOD detection performance.
arXiv Detail & Related papers (2024-07-31T16:55:18Z) - Investigating Out-of-Distribution Generalization of GNNs: An
Architecture Perspective [45.352741792795186]
We show that the graph self-attention mechanism and the decoupled architecture contribute positively to graph OOD generalization.
We develop a novel GNN backbone model, DGAT, designed to harness the robust properties of both graph self-attention mechanism and the decoupled architecture.
arXiv Detail & Related papers (2024-02-13T05:38:45Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
We develop a new graph contrastive learning framework GOOD-D for detecting OOD graphs without using any ground-truth labels.
GOOD-D is able to capture the latent ID patterns and accurately detect OOD graphs based on the semantic inconsistency in different granularities.
As a pioneering work in unsupervised graph-level OOD detection, we build a comprehensive benchmark to compare our proposed approach with different state-of-the-art methods.
arXiv Detail & Related papers (2022-11-08T12:41:58Z) - Invariance Principle Meets Out-of-Distribution Generalization on Graphs [66.04137805277632]
Complex nature of graphs thwarts the adoption of the invariance principle for OOD generalization.
domain or environment partitions, which are often required by OOD methods, can be expensive to obtain for graphs.
We propose a novel framework to explicitly model this process using a contrastive strategy.
arXiv Detail & Related papers (2022-02-11T04:38:39Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.