論文の概要: Compatibility of Fairness Metrics with EU Non-Discrimination Laws:
Demographic Parity & Conditional Demographic Disparity
- arxiv url: http://arxiv.org/abs/2306.08394v1
- Date: Wed, 14 Jun 2023 09:38:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 19:27:59.431344
- Title: Compatibility of Fairness Metrics with EU Non-Discrimination Laws:
Demographic Parity & Conditional Demographic Disparity
- Title(参考訳): 公正度とEU非差別法との整合性:復調パリティと条件付き復調異性
- Authors: Lisa Koutsoviti Koumeri, Magali Legast, Yasaman Yousefi, Koen Vanhoof,
Axel Legay, Christoph Schommer
- Abstract要約: 実証的な証拠は、機械学習(ML)技術によって駆動されるアルゴリズムによる決定が、法的に保護されたグループに対する差別を脅かしたり、新たな不公平な情報源を創り出すことを示唆している。
この研究は、公正度メトリックと公正度制約による法的公正性を保証するためのポイントを評価することを目的としています。
我々の実験と分析は、手元にあるケースと法的正当性に応じて、AIによる意思決定が法的な観点から公平である可能性を示唆している。
- 参考スコア(独自算出の注目度): 3.5607241839298878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Empirical evidence suggests that algorithmic decisions driven by Machine
Learning (ML) techniques threaten to discriminate against legally protected
groups or create new sources of unfairness. This work supports the contextual
approach to fairness in EU non-discrimination legal framework and aims at
assessing up to what point we can assure legal fairness through fairness
metrics and under fairness constraints. For that, we analyze the legal notion
of non-discrimination and differential treatment with the fairness definition
Demographic Parity (DP) through Conditional Demographic Disparity (CDD). We
train and compare different classifiers with fairness constraints to assess
whether it is possible to reduce bias in the prediction while enabling the
contextual approach to judicial interpretation practiced under EU
non-discrimination laws. Our experimental results on three scenarios show that
the in-processing bias mitigation algorithm leads to different performances in
each of them. Our experiments and analysis suggest that AI-assisted
decision-making can be fair from a legal perspective depending on the case at
hand and the legal justification. These preliminary results encourage future
work which will involve further case studies, metrics, and fairness notions.
- Abstract(参考訳): 実証的な証拠は、機械学習(ML)技術によって駆動されるアルゴリズムによる決定が、法的に保護されたグループに対する差別を脅かしたり、新たな不公平な情報源を創り出すことを示唆している。
この研究は、EUの非差別的法的枠組みにおける公正に対する文脈的アプローチをサポートし、公正度メトリクスと公正性制約による法的公正性を保証するためのポイントを評価することを目的としている。
そこで本研究では, 公平性定義(DP)による非差別・差分処理の法的概念を, 条件付き復号法(CDD)を用いて分析する。
我々は、EU非差別法の下で実施される司法解釈に対する文脈的アプローチを有効化しつつ、予測のバイアスを減らすことができるかどうかを評価するために、異なる分類器を公正な制約で訓練し比較する。
3つのシナリオにおける実験結果から,処理バイアス軽減アルゴリズムがそれぞれ異なる性能をもたらすことが示された。
我々の実験と分析は、手元にあるケースと法的正当性に応じて、AIによる意思決定が法的な観点から公平である可能性を示唆している。
これらの予備的な結果は、さらなるケーススタディ、メトリクス、公平性の概念を含む将来の研究を促進する。
関連論文リスト
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Reconciling Predictive and Statistical Parity: A Causal Approach [68.59381759875734]
本稿では,予測パリティに付随する公平度対策のための因果分解式を提案する。
統計的および予測パリティの概念は、実際には互いに排他的ではなく、相補的であり、公正の概念のスペクトルにまたがっていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:23:22Z) - Algorithmic Unfairness through the Lens of EU Non-Discrimination Law: Or
Why the Law is not a Decision Tree [5.153559154345212]
我々は、EUの非差別法は、コンピュータサイエンス文学において提案されたアルゴリズム的公正の概念と一致していることを示す。
公正度指標と技術的介入の規範的基盤を設定し、これらをEU司法裁判所の法的理由と比較した。
我々は、AI実践者や規制当局に影響を及ぼすと結論づける。
論文 参考訳(メタデータ) (2023-05-05T12:00:39Z) - Beyond Incompatibility: Trade-offs between Mutually Exclusive Fairness Criteria in Machine Learning and Law [2.959308758321417]
本稿では,3つのフェアネス基準を連続的に補間する新しいアルゴリズム(FAir Interpolation Method: FAIM)を提案する。
我々は,合成データ,CompASデータセット,電子商取引部門による新たな実世界のデータセットに適用した場合のアルゴリズムの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-01T12:47:54Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
我々は、機械学習と医療格差における公正性の交差を分析する。
機械学習の観点から、関連する公正度メトリクスを批判的にレビューする。
本稿では,医療における倫理的かつ公平なMLアプリケーション開発を約束する新たな研究指針を提案する。
論文 参考訳(メタデータ) (2022-06-29T04:32:10Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
対照的な学習を通してテキスト分類のための等化オッズとして知られる公平性の概念を満たす学習公正表現について研究する。
具体的には、まず、公正性制約のある学習表現と条件付き教師付きコントラスト目的との間の関係を理論的に分析する。
論文 参考訳(メタデータ) (2022-05-23T17:38:30Z) - Legal perspective on possible fairness measures - A legal discussion
using the example of hiring decisions (preprint) [0.0]
雇用決定の特定の適用に適用可能な、さまざまな公正の概念を説明します。
本研究は,それぞれの公正解釈について,その長所と短所を分析し,法的観点から評価する。
論文 参考訳(メタデータ) (2021-08-16T06:41:39Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
本論文では,LInCo(Legal Inconsistency Coefficient)の判定不整合性評価指標を提案する。
法的な判断予測(LJP)モデルを用いて異なる集団の裁判官をシミュレートし、異なる集団で訓練されたLJPモデルによる判断結果の不一致を判断する。
私達はLInCoを実際の場合の不一致を探検するために使用し、次の観察に来ます:(1)地域およびジェンダーの不一致は法制度でありますが、ジェンダーの不一致は地方不一致より大いにより少しです。
論文 参考訳(メタデータ) (2021-03-25T14:28:00Z) - Affirmative Algorithms: The Legal Grounds for Fairness as Awareness [0.0]
このようなアプローチがいかに「算術的肯定的行動」とみなされるかについて議論する。
我々は、政府契約の事件はアルゴリズムの公正性に代替的な根拠を与えると論じている。
我々は、偏り緩和が特定の原因と偏りのメカニズムに合わせたものであることを保証するために、アルゴリズム的公平性と因果推論の交点におけるさらなる研究を求める。
論文 参考訳(メタデータ) (2020-12-18T22:53:20Z) - Why Fairness Cannot Be Automated: Bridging the Gap Between EU
Non-Discrimination Law and AI [10.281644134255576]
欧州における差別の概念と既存の公正性に関する統計的尺度の間には、重大な矛盾がある。
我々は、人間ではなくAIが差別するときに、非差別法によって提供される法的保護がいかに挑戦されるかを示す。
標準基準統計量として「条件付き人口格差」(CDD)を提案する。
論文 参考訳(メタデータ) (2020-05-12T16:30:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。