論文の概要: DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment
- arxiv url: http://arxiv.org/abs/2403.18435v1
- Date: Wed, 27 Mar 2024 10:40:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 17:27:38.416697
- Title: DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment
- Title(参考訳): DELTA: 構造的単語アライメントによる判例検索のための事前訓練型識別エンコーダ
- Authors: Haitao Li, Qingyao Ai, Xinyan Han, Jia Chen, Qian Dong, Yiqun Liu, Chong Chen, Qi Tian,
- Abstract要約: 判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
- 参考スコア(独自算出の注目度): 55.91429725404988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research demonstrates the effectiveness of using pre-trained language models for legal case retrieval. Most of the existing works focus on improving the representation ability for the contextualized embedding of the [CLS] token and calculate relevance using textual semantic similarity. However, in the legal domain, textual semantic similarity does not always imply that the cases are relevant enough. Instead, relevance in legal cases primarily depends on the similarity of key facts that impact the final judgment. Without proper treatments, the discriminative ability of learned representations could be limited since legal cases are lengthy and contain numerous non-key facts. To this end, we introduce DELTA, a discriminative model designed for legal case retrieval. The basic idea involves pinpointing key facts in legal cases and pulling the contextualized embedding of the [CLS] token closer to the key facts while pushing away from the non-key facts, which can warm up the case embedding space in an unsupervised manner. To be specific, this study brings the word alignment mechanism to the contextual masked auto-encoder. First, we leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability. Second, we employ the deep decoder to enable translation between different structures, with the goal of pinpointing key facts to enhance discriminative ability. Comprehensive experiments conducted on publicly available legal benchmarks show that our approach can outperform existing state-of-the-art methods in legal case retrieval. It provides a new perspective on the in-depth understanding and processing of legal case documents.
- Abstract(参考訳): 近年, 判例検索における事前学習言語モデルの有効性が実証されている。
既存の作業の多くは,[CLS]トークンのコンテキスト化埋め込みにおける表現能力の向上と,テキスト意味的類似性を用いた関連性の評価に重点を置いている。
しかし、法的領域では、テキストの意味的類似性は、必ずしもケースが十分関係していることを示すものではない。
代わりに、訴訟の関連性は、主に最終判断に影響を及ぼす重要な事実の類似性に依存する。
適切な治療がなければ、法的ケースが長く、多くの非キー事実を含むため、学習された表現の識別能力は制限される可能性がある。
そこで本稿では,訴訟検索のための識別モデルであるDELTAを紹介する。
基本的な考え方は、訴訟における重要な事実の特定と、[CLS]トークンの文脈化された埋め込みを重要事実に近づけると同時に、キーでない事実から遠ざけ、ケース埋め込みスペースを教師なしの方法で温めることである。
具体的には、コンテキストマスキング自動エンコーダに単語アライメント機構を導入する。
まず,浅層デコーダを利用して情報ボトルネックを発生させ,表現能力の向上を目指す。
第二に、異なる構造間の翻訳を可能にするためにディープデコーダを使用し、差別能力を高めるために重要な事実をピンポイントすることを目的としている。
提案手法は, 既存の判例検索手法よりも優れていることを示す。
訴訟文書の詳細な理解と処理について、新たな視点を提供する。
関連論文リスト
- Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation [22.85652668826498]
本稿では,大言語モデル(LLM)に基づく法的な知識誘導型事例修正手法であるKELLERを紹介する。
犯罪や法律記事に関する専門的な法的知識を取り入れることで、大規模な言語モデルにより、原訴訟を犯罪の簡潔なサブファクトに正確に修正することができる。
論文 参考訳(メタデータ) (2024-06-28T08:59:45Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
本稿では,訴訟の関連判断に適した新規な数ショットワークフローを提案する。
LLMと人的専門家の関連判断を比較することで,信頼性の高い関連判断が得られたことを実証的に示す。
論文 参考訳(メタデータ) (2024-03-27T09:46:56Z) - LLM vs. Lawyers: Identifying a Subset of Summary Judgments in a Large UK
Case Law Dataset [0.0]
本研究は, 英国裁判所判決の大規模コーパスから, 判例, 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、
我々は、ケンブリッジ法コーパス356,011英国の裁判所決定を用いて、大きな言語モデルは、キーワードに対して重み付けされたF1スコアが0.94対0.78であると判断する。
我々は,3,102件の要約判断事例を同定し抽出し,その分布を時間的範囲の様々な英国裁判所にマップできるようにする。
論文 参考訳(メタデータ) (2024-03-04T10:13:30Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
類似事例検索(SCR)は、司法公正の促進に重要な役割を果たす代表的法的AIアプリケーションである。
既存のSCRデータセットは、ケース間の類似性を判断する際にのみ、事実記述セクションにフォーカスする。
本稿では,多視点類似度測定に基づく類似事例検索データセットMと,文レベル法定要素アノテーションを用いた包括的法定要素を提案する。
論文 参考訳(メタデータ) (2023-10-24T08:17:11Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
訴訟の事実記述文を考慮し、法的判断予測は、事件の告訴、法律記事、刑期を予測することを目的としている。
従来の研究では、標準的なクロスエントロピー分類損失と異なる分類誤差を区別できなかった。
本稿では,モコに基づく教師付きコントラスト学習を提案する。
さらに,事前学習した数値モデルにより符号化された抽出された犯罪量による事実記述の表現をさらに強化する。
論文 参考訳(メタデータ) (2022-11-15T15:53:56Z) - Legal Element-oriented Modeling with Multi-view Contrastive Learning for
Legal Case Retrieval [3.909749182759558]
本稿では,多視点コントラスト学習目標を用いた訴訟検索のための対話型ネットワークを提案する。
ケースビューコントラスト学習は、関連する訴訟表現の間の隠れた空間距離を最小化する。
ケースの法的な要素を検出するために、法的な要素の知識を意識した指標を用いています。
論文 参考訳(メタデータ) (2022-10-11T06:47:23Z) - A Principled Design of Image Representation: Towards Forensic Tasks [75.40968680537544]
本稿では, 理論, 実装, 応用の観点から, 法科学指向の画像表現を別の問題として検討する。
理論レベルでは、Dense Invariant Representation (DIR)と呼ばれる、数学的保証を伴う安定した記述を特徴とする、新しい法医学の表現フレームワークを提案する。
本稿では, ドメインパターンの検出とマッチング実験について, 最先端の記述子との比較結果を提供する。
論文 参考訳(メタデータ) (2022-03-02T07:46:52Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
因果推論は変数間の因果関係を捉えるプロセスである。
本論文では,事実記述から因果グラフを構築するための新たなグラフベース因果推論フレームワークを提案する。
GCIに含まれる因果知識を強力なニューラルネットワークに効果的に注入することで、パフォーマンスと解釈性が向上します。
論文 参考訳(メタデータ) (2021-04-19T16:13:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。