Analysis and Approximate Inference of Large Random Kronecker Graphs
- URL: http://arxiv.org/abs/2306.08489v2
- Date: Mon, 5 Feb 2024 11:06:07 GMT
- Title: Analysis and Approximate Inference of Large Random Kronecker Graphs
- Authors: Zhenyu Liao, Yuanqian Xia, Chengmei Niu, Yong Xiao
- Abstract summary: We show that the adjacency of a large random Kronecker graph can be decomposed.
We propose a denoise-and-solve'' approach to infer the key graph parameters.
- Score: 4.417282202068703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Random graph models are playing an increasingly important role in various
fields ranging from social networks, telecommunication systems, to physiologic
and biological networks. Within this landscape, the random Kronecker graph
model, emerges as a prominent framework for scrutinizing intricate real-world
networks. In this paper, we investigate large random Kronecker graphs, i.e.,
the number of graph vertices $N$ is large. Built upon recent advances in random
matrix theory (RMT) and high-dimensional statistics, we prove that the
adjacency of a large random Kronecker graph can be decomposed, in a spectral
norm sense, into two parts: a small-rank (of rank $O(\log N)$) signal matrix
that is linear in the graph parameters and a zero-mean random noise matrix.
Based on this result, we propose a ``denoise-and-solve'' approach to infer the
key graph parameters, with significantly reduced computational complexity.
Experiments on both graph inference and classification are presented to
evaluate the our proposed method. In both tasks, the proposed approach yields
comparable or advantageous performance, than widely-used graph inference (e.g.,
KronFit) and graph neural net baselines, at a time cost that scales linearly as
the graph size $N$.
Related papers
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
We study the generalization capabilities of geometric graph neural networks (GNNs)
We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN.
The most important observation is that the generalization capability can be realized with one large graph instead of being limited to the size of the graph as in previous results.
arXiv Detail & Related papers (2024-09-08T18:55:57Z) - Information-Theoretic Thresholds for Planted Dense Cycles [52.076657911275525]
We study a random graph model for small-world networks which are ubiquitous in social and biological sciences.
For both detection and recovery of the planted dense cycle, we characterize the information-theoretic thresholds in terms of $n$, $tau$, and an edge-wise signal-to-noise ratio $lambda$.
arXiv Detail & Related papers (2024-02-01T03:39:01Z) - Graph Neural Networks with a Distribution of Parametrized Graphs [27.40566674759208]
We introduce latent variables to parameterize and generate multiple graphs.
We obtain the maximum likelihood estimate of the network parameters in an Expectation-Maximization framework.
arXiv Detail & Related papers (2023-10-25T06:38:24Z) - General Graph Random Features [42.75616308187867]
We propose a novel random walk-based algorithm for unbiased estimation of arbitrary functions of a weighted adjacency matrix.
Our algorithm enjoys subquadratic time complexity with respect to the number of nodes, overcoming the notoriously prohibitive cubic scaling of exact graph kernel evaluation.
arXiv Detail & Related papers (2023-10-07T15:47:31Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Effects of Graph Convolutions in Deep Networks [8.937905773981702]
We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks.
We show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data.
We provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network.
arXiv Detail & Related papers (2022-04-20T08:24:43Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.