Self-Supervised Polyp Re-Identification in Colonoscopy
- URL: http://arxiv.org/abs/2306.08591v1
- Date: Wed, 14 Jun 2023 15:53:54 GMT
- Title: Self-Supervised Polyp Re-Identification in Colonoscopy
- Authors: Yotam Intrator, Natalie Aizenberg, Amir Livne, Ehud Rivlin, Roman
Goldenberg
- Abstract summary: We propose a robust long term polyp tracking method based on re-identification by visual appearance.
Our solution uses an attention-based self-supervised ML model, specifically designed to leverage the temporal nature of video input.
- Score: 1.9678816712224196
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Computer-aided polyp detection (CADe) is becoming a standard, integral part
of any modern colonoscopy system. A typical colonoscopy CADe detects a polyp in
a single frame and does not track it through the video sequence. Yet, many
downstream tasks including polyp characterization (CADx), quality metrics,
automatic reporting, require aggregating polyp data from multiple frames. In
this work we propose a robust long term polyp tracking method based on
re-identification by visual appearance. Our solution uses an attention-based
self-supervised ML model, specifically designed to leverage the temporal nature
of video input. We quantitatively evaluate method's performance and demonstrate
its value for the CADx task.
Related papers
- SSTFB: Leveraging self-supervised pretext learning and temporal self-attention with feature branching for real-time video polyp segmentation [4.027361638728112]
We propose a video polyp segmentation method that performs self-supervised learning as an auxiliary task and a spatial-temporal self-attention mechanism for improved representation learning.
Our experimental results demonstrate an improvement with respect to several state-of-the-art (SOTA) methods.
Our ablation study confirms that the choice of the proposed joint end-to-end training improves network accuracy by over 3% and nearly 10% on both the Dice similarity coefficient and intersection-over-union.
arXiv Detail & Related papers (2024-06-14T17:33:11Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - YONA: You Only Need One Adjacent Reference-frame for Accurate and Fast
Video Polyp Detection [80.68520401539979]
textbfYONA (textbfYou textbfOnly textbfNeed one textbfAdjacent Reference-frame) is an efficient end-to-end training framework for video polyp detection.
Our proposed YONA outperforms previous state-of-the-art competitors by a large margin in both accuracy and speed.
arXiv Detail & Related papers (2023-06-06T13:53:15Z) - Accurate Real-time Polyp Detection in Videos from Concatenation of
Latent Features Extracted from Consecutive Frames [5.2009074009536524]
Convolutional neural networks (CNNs) are vulnerable to small changes in the input image.
A CNN-based model may miss the same polyp appearing in a series of consecutive frames.
We propose an efficient feature concatenation method for a CNN-based encoder-decoder model.
arXiv Detail & Related papers (2023-03-10T11:51:22Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Contrastive Transformer-based Multiple Instance Learning for Weakly
Supervised Polyp Frame Detection [30.51410140271929]
Current polyp detection methods from colonoscopy videos use exclusively normal (i.e., healthy) training images.
We formulate polyp detection as a weakly-supervised anomaly detection task that uses video-level labelled training data to detect frame-level polyps.
arXiv Detail & Related papers (2022-03-23T01:30:48Z) - Stepwise Feature Fusion: Local Guides Global [14.394421688712052]
We propose a new State-Of-The-Art model for medical image segmentation, the SSFormer, which uses a pyramid Transformer encoder to improve the generalization ability of models.
Our proposed Progressive Locality Decoder can be adapted to the pyramid Transformer backbone to emphasize local features and attention dispersion.
arXiv Detail & Related papers (2022-03-07T10:36:38Z) - Colonoscopy polyp detection with massive endoscopic images [4.458670612147842]
We improved an existing end-to-end polyp detection model with better average precision validated by different data sets.
Our model can achieve state-of-the-art polyp detection performance while still maintain real-time detection speed.
arXiv Detail & Related papers (2022-02-17T16:07:59Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Colonoscopy Polyp Detection: Domain Adaptation From Medical Report
Images to Real-time Videos [76.37907640271806]
We propose an Image-video-joint polyp detection network (Ivy-Net) to address the domain gap between colonoscopy images from historical medical reports and real-time videos.
Experiments on the collected dataset demonstrate that our Ivy-Net achieves the state-of-the-art result on colonoscopy video.
arXiv Detail & Related papers (2020-12-31T10:33:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.