Towards Polyp Counting In Full-Procedure Colonoscopy Videos
- URL: http://arxiv.org/abs/2502.10054v1
- Date: Fri, 14 Feb 2025 10:02:38 GMT
- Title: Towards Polyp Counting In Full-Procedure Colonoscopy Videos
- Authors: Luca Parolari, Andrea Cherubini, Lamberto Ballan, Carlo Biffi,
- Abstract summary: A major challenge lies in the automated identification, tracking, and re-association (ReID) of polyps tracklets across full-procedure colonoscopy videos.
In this work, we leverage the REAL-Colon dataset, the first open-access dataset providing full-procedure videos.
We re-implement previously proposed SimCLR-based methods for learning representations of polyp tracklets.
Our approach achieves state-of-the-art performance, with a polyp fragmentation rate of 6.30 and a false positive rate (FPR) below 5% on the REAL-Colon dataset.
- Score: 5.7522869823664005
- License:
- Abstract: Automated colonoscopy reporting holds great potential for enhancing quality control and improving cost-effectiveness of colonoscopy procedures. A major challenge lies in the automated identification, tracking, and re-association (ReID) of polyps tracklets across full-procedure colonoscopy videos. This is essential for precise polyp counting and enables automated computation of key quality metrics, such as Adenoma Detection Rate (ADR) and Polyps Per Colonoscopy (PPC). However, polyp ReID is challenging due to variations in polyp appearance, frequent disappearance from the field of view, and occlusions. In this work, we leverage the REAL-Colon dataset, the first open-access dataset providing full-procedure videos, to define tasks, data splits and metrics for the problem of automatically count polyps in full-procedure videos, establishing an open-access framework. We re-implement previously proposed SimCLR-based methods for learning representations of polyp tracklets, both single-frame and multi-view, and adapt them to the polyp counting task. We then propose an Affinity Propagation-based clustering method to further improve ReID based on these learned representations, ultimately enhancing polyp counting. Our approach achieves state-of-the-art performance, with a polyp fragmentation rate of 6.30 and a false positive rate (FPR) below 5% on the REAL-Colon dataset. We release code at https://github.com/lparolari/towards-polyp-counting.
Related papers
- SSTFB: Leveraging self-supervised pretext learning and temporal self-attention with feature branching for real-time video polyp segmentation [4.027361638728112]
We propose a video polyp segmentation method that performs self-supervised learning as an auxiliary task and a spatial-temporal self-attention mechanism for improved representation learning.
Our experimental results demonstrate an improvement with respect to several state-of-the-art (SOTA) methods.
Our ablation study confirms that the choice of the proposed joint end-to-end training improves network accuracy by over 3% and nearly 10% on both the Dice similarity coefficient and intersection-over-union.
arXiv Detail & Related papers (2024-06-14T17:33:11Z) - Consisaug: A Consistency-based Augmentation for Polyp Detection in Endoscopy Image Analysis [3.716941460306804]
We introduce Consisaug, an innovative and effective methodology to augment data that leverages deep learning.
We implement our Consisaug on five public polyp datasets and at three backbones, and the results show the effectiveness of our method.
arXiv Detail & Related papers (2024-04-17T13:09:44Z) - COLON: The largest COlonoscopy LONg sequence public database [0.0]
Polyps, as the main biomarker of the disease, are detected, localized, and characterized through colonoscopy procedures.
Currently, publicly available polyp datasets have allowed significant advances in computational strategies dedicated to characterizing non-parametric polyp shapes.
This work introduces COLON: the largest COlonoscopy LONg sequence dataset with around of 30 thousand polyp labeled frames and 400 thousand background frames.
arXiv Detail & Related papers (2024-03-01T16:50:16Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Self-Supervised Polyp Re-Identification in Colonoscopy [1.9678816712224196]
We propose a robust long term polyp tracking method based on re-identification by visual appearance.
Our solution uses an attention-based self-supervised ML model, specifically designed to leverage the temporal nature of video input.
arXiv Detail & Related papers (2023-06-14T15:53:54Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - AG-CUResNeSt: A Novel Method for Colon Polyp Segmentation [0.0]
This paper proposes a novel neural network architecture called AG-CUResNeSt, which enhances Coupled UNets using the robust ResNeSt backbone and attention gates.
We show that our proposed method achieves state-of-the-art accuracy compared to existing methods.
arXiv Detail & Related papers (2021-05-02T06:36:36Z) - Colonoscopy Polyp Detection: Domain Adaptation From Medical Report
Images to Real-time Videos [76.37907640271806]
We propose an Image-video-joint polyp detection network (Ivy-Net) to address the domain gap between colonoscopy images from historical medical reports and real-time videos.
Experiments on the collected dataset demonstrate that our Ivy-Net achieves the state-of-the-art result on colonoscopy video.
arXiv Detail & Related papers (2020-12-31T10:33:09Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.