Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms
- URL: http://arxiv.org/abs/2009.03718v1
- Date: Tue, 8 Sep 2020 13:11:22 GMT
- Title: Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms
- Authors: Chen-Yue Guo, L.-L. Yan, Shou Zhang, Shi-Lei Su, Weibin Li
- Abstract summary: We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with Rydberg atoms.
We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations.
Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations.
- Score: 1.3124513975412255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a nonadiabatic non-Abelian geometric quantum operation scheme to
realize universal quantum computation with mesoscopic Rydberg atoms. A single
control atom entangles a mesoscopic ensemble of target atoms through long-range
interactions between Rydberg states. We demonstrate theoretically that both the
single qubit and two-qubit quantum gates can achieve high fidelities around or
above 99.9% in ideal situations. Besides, to address the experimental issue of
Rabi frequency fluctuation (Rabi error) in Rydberg atom and ensemble, we apply
the dynamical-invariant-based zero systematic-error sensitivity (ZSS) optimal
control theory to the proposed scheme. Our numerical simulations show that the
average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for
two-qubit gate even when the Rabi frequency of the gate laser acquires 10%
fluctuations. We also find that the optimized scheme can also reduce errors
caused by higher-order perturbation terms in deriving the Hamiltonian of the
ensemble atoms. To address the experimental issue of decoherence error between
the ground state and Rydberg levels in Rydberg ensemble, we introduce a
dispersive coupling regime between Rydberg and ground levels, based on which
the Rydberg state is adiabatically discarded. The numerical simulation
demonstrate that the quantum gate is enhanced. By combining strong Rydberg atom
interactions, nonadiabatic geometric quantum computation, dynamical invariant
and optimal control theory together, our scheme shows a new route to construct
fast and robust quantum gates with mesoscopic atomic ensembles. Our study
contributes to the ongoing effort in developing quantum information processing
with Rydberg atoms trapped in optical lattices or tweezer arrays.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Quantum error detection with noise-resilient parity-controlled gate in two-dimensional Rydberg atom arrays [0.4473518548010192]
Quantum error detection relies on precise measurement of qubit parity.
We introduce a resilient parity-controlled gate tailored for detecting quantum errors within a 2D Rydberg atom array.
arXiv Detail & Related papers (2024-05-29T23:13:57Z) - Floquet geometric entangling gates in ground-state manifolds of Rydberg atoms [0.49157446832511503]
We propose new applications of Floquet theory in Rydberg atoms for constructing quantum entangling gates.
Error-resilient two-qubit entangling gates can be implemented in the regime of Rydberg blockade.
arXiv Detail & Related papers (2024-05-01T12:15:48Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Robust control and optimal Rydberg states for neutral atom two-qubit
gates [0.0]
We investigate the robustness of two-qubit gates to deviations of experimental controls on a neutral atom platform utilizing Rydberg states.
We construct robust CZ gates that retain high Bell state fidelity $F > 0.999$ in the presence of significant deviations of the coupling strength to the Rydberg state.
arXiv Detail & Related papers (2022-12-20T10:53:24Z) - Electron cloud design for Rydberg multi-qubit gates [0.0]
This article proposes quantum processing in an optical lattice, using Rydberg electron's Fermi scattering from ground-state atoms.
The interaction is controlled by engineering the electron cloud of a sole Rydberg atom.
The features in the new scheme are of special interest for the implementation of quantum optimization and error correction algorithms.
arXiv Detail & Related papers (2021-11-02T13:17:10Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Resilient quantum gates on periodically driven Rydberg atoms [10.602950162554212]
The platform of Rydberg atoms is one of the most promising candidates for achieving quantum computation.
We propose a controlled-$Z$ gate on Rydberg atoms where an amplitude-modulated field is employed to induce Rydberg antiblockade.
We generalize the gate scheme into multiqubit cases, where resilient multiqubit phase gates can be obtained in one step with an unchanged gate time as the number of qubits increases.
arXiv Detail & Related papers (2021-01-07T02:13:18Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.