Hamiltonian Quantum Generative Adversarial Networks
- URL: http://arxiv.org/abs/2211.02584v2
- Date: Mon, 8 Jul 2024 03:18:32 GMT
- Title: Hamiltonian Quantum Generative Adversarial Networks
- Authors: Leeseok Kim, Seth Lloyd, Milad Marvian,
- Abstract summary: We propose Hamiltonian Quantum Generative Adversarial Networks (HQuGANs) to learn to generate unknown input quantum states.
We numerically demonstrate the capabilities of the proposed framework to learn various highly entangled many-body quantum states.
- Score: 4.806505912512235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Hamiltonian Quantum Generative Adversarial Networks (HQuGANs), to learn to generate unknown input quantum states using two competing quantum optimal controls. The game-theoretic framework of the algorithm is inspired by the success of classical generative adversarial networks in learning high-dimensional distributions. The quantum optimal control approach not only makes the algorithm naturally adaptable to the experimental constraints of near-term hardware, but also offers a more natural characterization of overparameterization compared to the circuit model. We numerically demonstrate the capabilities of the proposed framework to learn various highly entangled many-body quantum states, using simple two-body Hamiltonians and under experimentally relevant constraints such as low-bandwidth controls. We analyze the computational cost of implementing HQuGANs on quantum computers and show how the framework can be extended to learn quantum dynamics. Furthermore, we introduce a new cost function that circumvents the problem of mode collapse that prevents convergence of HQuGANs and demonstrate how to accelerate the convergence of them when generating a pure state.
Related papers
- Machine-learning-inspired quantum optimal control of nonadiabatic
geometric quantum computation via reverse engineering [3.3216171033358077]
We propose a promising average-fidelity-based machine-learning-inspired method to optimize the control parameters.
We implement a single-qubit gate by cat-state nonadiabatic geometric quantum computation via reverse engineering.
We demonstrate that the neural network possesses the ability to expand the model space.
arXiv Detail & Related papers (2023-09-28T14:36:26Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Entanglement Forging with generative neural network models [0.0]
We show that a hybrid quantum-classical variational ans"atze can forge entanglement to lower quantum resource overhead.
The method is efficient in terms of the number of measurements required to achieve fixed precision on expected values of observables.
arXiv Detail & Related papers (2022-05-02T14:29:17Z) - Machine-learning assisted quantum control in random environment [3.8580539160777625]
We introduce proof of the concept and analyze neural network-based machine learning algorithm.
We show that convolutional neural networks are able to solve this problem as they can recognize the disorder.
We have shown that the accuracy of the proposed algorithm is enhanced by a higher-dimensional mapping of the disorder pattern.
arXiv Detail & Related papers (2022-02-21T15:12:39Z) - Self-Correcting Quantum Many-Body Control using Reinforcement Learning
with Tensor Networks [0.0]
We present a novel framework for efficiently controlling quantum many-body systems based on reinforcement learning (RL)
We show that RL agents are capable of finding universal controls, of learning how to optimally steer previously unseen many-body states, and of adapting control protocols on-thefly when the quantum dynamics is subject to perturbations.
arXiv Detail & Related papers (2022-01-27T20:14:09Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.