論文の概要: InfoDiffusion: Representation Learning Using Information Maximizing
Diffusion Models
- arxiv url: http://arxiv.org/abs/2306.08757v1
- Date: Wed, 14 Jun 2023 21:48:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 17:12:27.897511
- Title: InfoDiffusion: Representation Learning Using Information Maximizing
Diffusion Models
- Title(参考訳): infodiffusion:情報最大化拡散モデルを用いた表現学習
- Authors: Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang,
Christopher De Sa, Volodymyr Kuleshov
- Abstract要約: InfoDiffusionは低次元潜伏変数を持つ拡散モデルを拡張するアルゴリズムである。
情報拡散は、観測された変数と隠れた変数の相互情報に規則化された学習目標に依存する。
インフォディフュージョンは、最先端の生成的およびコントラスト的手法と競合する非絡み合いおよび人間解釈可能な潜在表現を学習する。
- 参考スコア(独自算出の注目度): 35.566528358691336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While diffusion models excel at generating high-quality samples, their latent
variables typically lack semantic meaning and are not suitable for
representation learning. Here, we propose InfoDiffusion, an algorithm that
augments diffusion models with low-dimensional latent variables that capture
high-level factors of variation in the data. InfoDiffusion relies on a learning
objective regularized with the mutual information between observed and hidden
variables, which improves latent space quality and prevents the latents from
being ignored by expressive diffusion-based decoders. Empirically, we find that
InfoDiffusion learns disentangled and human-interpretable latent
representations that are competitive with state-of-the-art generative and
contrastive methods, while retaining the high sample quality of diffusion
models. Our method enables manipulating the attributes of generated images and
has the potential to assist tasks that require exploring a learned latent space
to generate quality samples, e.g., generative design.
- Abstract(参考訳): 拡散モデルは高品質なサンプルを生成するのに優れているが、潜伏変数は通常意味を欠き、表現学習には適さない。
本稿では,データ変動の高レベル因子をキャプチャする低次元潜在変数を用いた拡散モデルの拡張アルゴリズムであるinfodiffusionを提案する。
InfoDiffusionは、観測された変数と隠れた変数の相互情報に規則化された学習目標に依存し、遅延空間の品質を改善し、表現的な拡散に基づくデコーダによって潜伏者が無視されるのを防ぐ。
経験的に、InfoDiffusionは、拡散モデルの高いサンプル品質を維持しながら、最先端の生成的およびコントラスト的手法と競合する、絡み合った人間の解釈可能な潜在表現を学習する。
提案手法は, 生成画像の属性を操作可能であり, 生成設計などの品質サンプルを生成するために学習した潜伏空間を探索するタスクを支援することができる。
関連論文リスト
- Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Data-Free Federated Class Incremental Learning with Diffusion-Based Generative Memory [27.651921957220004]
拡散型生成メモリ(DFedDGM)を用いた新しいデータフリーフェデレーションクラスインクリメンタルラーニングフレームワークを提案する。
FLにおける一般の非IID問題を軽減するために拡散モデルの訓練を支援するために,新しいバランスの取れたサンプルを設計する。
また、情報理論の観点からエントロピーに基づくサンプルフィルタリング手法を導入し、生成サンプルの品質を向上させる。
論文 参考訳(メタデータ) (2024-05-22T20:59:18Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - DiffAugment: Diffusion based Long-Tailed Visual Relationship Recognition [43.01467525231004]
DiffAugment は WordNet を利用して言語空間のテールクラスを拡張する手法である。
本研究は, テールクラスに対する視覚的埋め込み生成における硬度認識拡散の有効性を実証する。
また,生成した視覚的埋め込みの識別能力を向上する,拡散サンプリングのための新しい主題とオブジェクトベースのシード戦略を提案する。
論文 参考訳(メタデータ) (2024-01-01T21:20:43Z) - DiffAug: Enhance Unsupervised Contrastive Learning with Domain-Knowledge-Free Diffusion-based Data Augmentation [48.25619775814776]
本稿では,拡散モードに基づく正データ生成を用いた新しい教師なしコントラスト学習手法であるDiffAugを提案する。
DiffAugはセマンティックエンコーダと条件拡散モデルから構成されており、条件拡散モデルはセマンティックエンコーダに条件付された新しい正のサンプルを生成する。
実験的評価により、DiffAugは、DNA配列、視覚、および生体機能データセットのハンドデザインおよびSOTAモデルに基づく拡張手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-10T13:28:46Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
拡散モデルに対する近年の関心を踏まえて、生成的に事前学習された視覚表現を再考する。
拡散モデルによる直接事前学習では強い表現は得られないが、マスク付き入力上での拡散モデルと公式拡散モデルをマスク付きオートエンコーダ(DiffMAE)として条件付ける。
設計選択の長所と短所について包括的な研究を行い、拡散モデルとマスク付きオートエンコーダ間の接続を構築する。
論文 参考訳(メタデータ) (2023-04-06T17:59:56Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
大規模テキスト・画像拡散モデルからの密度推定をゼロショット分類に活用できることを示す。
分類に対する我々の生成的アプローチは、様々なベンチマークで強い結果が得られる。
我々の結果は、下流タスクにおける差別的モデルよりも生成的な利用に向けての一歩である。
論文 参考訳(メタデータ) (2023-03-28T17:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。