論文の概要: DiffAug: Enhance Unsupervised Contrastive Learning with Domain-Knowledge-Free Diffusion-based Data Augmentation
- arxiv url: http://arxiv.org/abs/2309.07909v2
- Date: Sat, 25 May 2024 14:43:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 11:58:46.333506
- Title: DiffAug: Enhance Unsupervised Contrastive Learning with Domain-Knowledge-Free Diffusion-based Data Augmentation
- Title(参考訳): DiffAug: ドメイン知識のない拡散に基づくデータ拡張による教師なしコントラスト学習の促進
- Authors: Zelin Zang, Hao Luo, Kai Wang, Panpan Zhang, Fan Wang, Stan. Z Li, Yang You,
- Abstract要約: 本稿では,拡散モードに基づく正データ生成を用いた新しい教師なしコントラスト学習手法であるDiffAugを提案する。
DiffAugはセマンティックエンコーダと条件拡散モデルから構成されており、条件拡散モデルはセマンティックエンコーダに条件付された新しい正のサンプルを生成する。
実験的評価により、DiffAugは、DNA配列、視覚、および生体機能データセットのハンドデザインおよびSOTAモデルに基づく拡張手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 48.25619775814776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Contrastive learning has gained prominence in fields such as vision, and biology, leveraging predefined positive/negative samples for representation learning. Data augmentation, categorized into hand-designed and model-based methods, has been identified as a crucial component for enhancing contrastive learning. However, hand-designed methods require human expertise in domain-specific data while sometimes distorting the meaning of the data. In contrast, generative model-based approaches usually require supervised or large-scale external data, which has become a bottleneck constraining model training in many domains. To address the problems presented above, this paper proposes DiffAug, a novel unsupervised contrastive learning technique with diffusion mode-based positive data generation. DiffAug consists of a semantic encoder and a conditional diffusion model; the conditional diffusion model generates new positive samples conditioned on the semantic encoding to serve the training of unsupervised contrast learning. With the help of iterative training of the semantic encoder and diffusion model, DiffAug improves the representation ability in an uninterrupted and unsupervised manner. Experimental evaluations show that DiffAug outperforms hand-designed and SOTA model-based augmentation methods on DNA sequence, visual, and bio-feature datasets. The code for review is released at \url{https://github.com/zangzelin/code_diffaug}.
- Abstract(参考訳): 教師なしのコントラスト学習は、事前定義された正・負のサンプルを表現学習に活用して、視覚や生物学などの分野で注目されている。
データ拡張は手書きとモデルベースに分類され、コントラスト学習の強化に欠かせない要素として認識されている。
しかし、手書きの手法は、時にデータの意味を歪めながら、ドメイン固有のデータに人間の専門知識を必要とする。
対照的に、生成モデルに基づくアプローチは通常、多くのドメインでモデルのトレーニングを制約するボトルネックとなっている、教師付きまたは大規模な外部データを必要とする。
本稿では,拡散モードに基づく正データ生成を伴う非教師付きコントラスト学習手法であるDiffAugを提案する。
DiffAugはセマンティックエンコーダと条件付き拡散モデルから構成され、条件付き拡散モデルはセマンティックエンコーダに条件付された新しい正のサンプルを生成し、教師なしコントラスト学習のトレーニングに役立てる。
セマンティックエンコーダと拡散モデルの反復的トレーニングの助けを借りて、DiffAugは非中断かつ教師なしの方法で表現能力を向上させる。
実験的評価により、DiffAugは、DNA配列、視覚、および生体機能データセットのハンドデザインおよびSOTAモデルに基づく拡張手法よりも優れていることが示された。
レビュー用のコードは \url{https://github.com/zangzelin/code_diffaug} で公開されている。
関連論文リスト
- MacDiff: Unified Skeleton Modeling with Masked Conditional Diffusion [14.907473847787541]
人間の骨格モデリングのための統合フレームワークとして,Masked Diffusion Conditional (MacDiff)を提案する。
まず,拡散モデルを用いて効率的な骨格表現学習を行う。
MacDiffは、生成タスクの能力を維持しながら、表現学習ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-09-16T17:06:10Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - SODA: Bottleneck Diffusion Models for Representation Learning [75.7331354734152]
本稿では,表現学習のための自己教師付き拡散モデルSODAを紹介する。
このモデルには、ソースビューをコンパクトな表現に蒸留するイメージエンコーダが組み込まれており、関連する新規ビューの生成を導く。
エンコーダと復調復調復調復調復調復調復調復調復号器の密集ボトルネックを付与することにより,拡散モデルを強力な表現学習器に変換することができることを示す。
論文 参考訳(メタデータ) (2023-11-29T18:53:34Z) - Directional diffusion models for graph representation learning [9.457273750874357]
我々は方向拡散モデルと呼ばれる新しいモデルのクラスを提案する。
これらのモデルは前方拡散過程にデータ依存、異方性、指向性ノイズを含む。
我々は,2つのグラフ表現学習タスクに焦点をあてて,12の公開データセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2023-06-22T21:27:48Z) - InfoDiffusion: Representation Learning Using Information Maximizing
Diffusion Models [35.566528358691336]
InfoDiffusionは低次元潜伏変数を持つ拡散モデルを拡張するアルゴリズムである。
情報拡散は、観測された変数と隠れた変数の相互情報に規則化された学習目標に依存する。
インフォディフュージョンは、最先端の生成的およびコントラスト的手法と競合する非絡み合いおよび人間解釈可能な潜在表現を学習する。
論文 参考訳(メタデータ) (2023-06-14T21:48:38Z) - Phoenix: A Federated Generative Diffusion Model [6.09170287691728]
大規模な集中型データセットで生成モデルをトレーニングすることで、データのプライバシやセキュリティ、アクセシビリティといった面での課題が発生する可能性がある。
本稿では,フェデレートラーニング(FL)技術を用いて,複数のデータソースにまたがる拡散確率モデル(DDPM)の学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T01:43:09Z) - Diffusion-Based Representation Learning [65.55681678004038]
教師付き信号のない表現学習を実現するために,デノナイズスコアマッチングフレームワークを拡張した。
対照的に、拡散に基づく表現学習は、デノナイジングスコアマッチング目的の新しい定式化に依存している。
同じ手法を用いて,半教師付き画像分類における最先端モデルの改善を実現する無限次元潜在符号の学習を提案する。
論文 参考訳(メタデータ) (2021-05-29T09:26:02Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。