XForecast: Evaluating Natural Language Explanations for Time Series Forecasting
- URL: http://arxiv.org/abs/2410.14180v2
- Date: Mon, 21 Oct 2024 03:19:40 GMT
- Title: XForecast: Evaluating Natural Language Explanations for Time Series Forecasting
- Authors: Taha Aksu, Chenghao Liu, Amrita Saha, Sarah Tan, Caiming Xiong, Doyen Sahoo,
- Abstract summary: Time series forecasting aids decision-making, especially for stakeholders who rely on accurate predictions.
Traditional explainable AI (XAI) methods, which underline feature or temporal importance, often require expert knowledge.
evaluating forecast NLEs is difficult due to the complex causal relationships in time series data.
- Score: 72.57427992446698
- License:
- Abstract: Time series forecasting aids decision-making, especially for stakeholders who rely on accurate predictions, making it very important to understand and explain these models to ensure informed decisions. Traditional explainable AI (XAI) methods, which underline feature or temporal importance, often require expert knowledge. In contrast, natural language explanations (NLEs) are more accessible to laypeople. However, evaluating forecast NLEs is difficult due to the complex causal relationships in time series data. To address this, we introduce two new performance metrics based on simulatability, assessing how well a human surrogate can predict model forecasts using the explanations. Experiments show these metrics differentiate good from poor explanations and align with human judgments. Utilizing these metrics, we further evaluate the ability of state-of-the-art large language models (LLMs) to generate explanations for time series data, finding that numerical reasoning, rather than model size, is the main factor influencing explanation quality.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Counterfactual Explanations for Deep Learning-Based Traffic Forecasting [42.31238891397725]
This study aims to leverage an Explainable AI approach, counterfactual explanations, to enhance the explainability and usability of deep learning-based traffic forecasting models.
The study first implements a deep learning model to predict traffic speed based on historical traffic data and contextual variables.
Counterfactual explanations are then used to illuminate how alterations in these input variables affect predicted outcomes.
arXiv Detail & Related papers (2024-05-01T11:26:31Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Back to the Future: Towards Explainable Temporal Reasoning with Large
Language Models [33.8108950744839]
We introduce the first task of explainable temporal reasoning, to predict an event's occurrence at a future timestamp based on context.
We show that our method achieves the state-of-the-art performance of temporal prediction and explanation.
arXiv Detail & Related papers (2023-10-02T10:35:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Faithfulness Tests for Natural Language Explanations [87.01093277918599]
Explanations of neural models aim to reveal a model's decision-making process for its predictions.
Recent work shows that current methods giving explanations such as saliency maps or counterfactuals can be misleading.
This work explores the challenging question of evaluating the faithfulness of natural language explanations.
arXiv Detail & Related papers (2023-05-29T11:40:37Z) - Generic Temporal Reasoning with Differential Analysis and Explanation [61.96034987217583]
We introduce a novel task named TODAY that bridges the gap with temporal differential analysis.
TODAY evaluates whether systems can correctly understand the effect of incremental changes.
We show that TODAY's supervision style and explanation annotations can be used in joint learning.
arXiv Detail & Related papers (2022-12-20T17:40:03Z) - Towards a Rigorous Evaluation of Explainability for Multivariate Time
Series [5.786452383826203]
This study was to achieve and evaluate model agnostic explainability in a time series forecasting problem.
The solution involved framing the problem as a time series forecasting problem to predict the sales deals.
The explanations produced by LIME and SHAP greatly helped lay humans in understanding the predictions made by the machine learning model.
arXiv Detail & Related papers (2021-04-06T17:16:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.