Towards Understanding the Influence of Training Samples on Explanations
- URL: http://arxiv.org/abs/2406.03012v2
- Date: Tue, 25 Mar 2025 12:17:25 GMT
- Title: Towards Understanding the Influence of Training Samples on Explanations
- Authors: André Artelt, Barbara Hammer,
- Abstract summary: Explainable AI (XAI) is widely used to analyze AI systems' decision-making.<n>When unexpected explanations occur, users may want to understand the training data properties shaping them.<n>Under the umbrella of data valuation, first approaches have been proposed that estimate the influence of data samples on a given model.
- Score: 5.695152528716705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable AI (XAI) is widely used to analyze AI systems' decision-making, such as providing counterfactual explanations for recourse. When unexpected explanations occur, users may want to understand the training data properties shaping them. Under the umbrella of data valuation, first approaches have been proposed that estimate the influence of data samples on a given model. This process not only helps determine the data's value, but also offers insights into how individual, potentially noisy, or misleading examples affect a model, which is crucial for interpretable AI. In this work, we apply the concept of data valuation to the significant area of model evaluations, focusing on how individual training samples impact a model's internal reasoning rather than the predictive performance only. Hence, we introduce the novel problem of identifying training samples shaping a given explanation or related quantity, and investigate the particular case of the cost of computational recourse. We propose an algorithm to identify such influential samples and conduct extensive empirical evaluations in two case studies.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - From Model Explanation to Data Misinterpretation: Uncovering the Pitfalls of Post Hoc Explainers in Business Research [3.7209396288545338]
We find a growing trend in business research where post hoc explanations are used to draw inferences about the data.
The ultimate goal of this paper is to caution business researchers against translating post hoc explanations of machine learning models into potentially false insights and understanding of data.
arXiv Detail & Related papers (2024-08-30T03:22:35Z) - Explainability of Machine Learning Models under Missing Data [3.0485328005356136]
Missing data is a prevalent issue that can significantly impair model performance and explainability.
This paper briefly summarizes the development of the field of missing data and investigates the effects of various imputation methods on SHAP.
arXiv Detail & Related papers (2024-06-29T11:31:09Z) - Selective Explanations [14.312717332216073]
A machine learning model is trained to predict feature attribution scores with only one inference.
Despite their efficiency, amortized explainers can produce inaccurate predictions and misleading explanations.
We propose selective explanations, a novel feature attribution method that detects when amortized explainers generate low-quality explanations.
arXiv Detail & Related papers (2024-05-29T23:08:31Z) - Outlier Gradient Analysis: Efficiently Identifying Detrimental Training Samples for Deep Learning Models [36.05242956018461]
In this paper, we establish a bridge between identifying detrimental training samples via influence functions and outlier gradient detection.
We first validate the hypothesis of our proposed outlier gradient analysis approach on synthetic datasets.
We then demonstrate its effectiveness in detecting mislabeled samples in vision models and selecting data samples for improving performance of natural language processing transformer models.
arXiv Detail & Related papers (2024-05-06T21:34:46Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes [30.30769701138665]
We introduce and explore the Mirrored Influence Hypothesis, highlighting a reciprocal nature of influence between training and test data.
Specifically, it suggests that evaluating the influence of training data on test predictions can be reformulated as an equivalent, yet inverse problem.
We introduce a new method for estimating the influence of training data, which requires calculating gradients for specific test samples, paired with a forward pass for each training point.
arXiv Detail & Related papers (2024-02-14T03:43:05Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Example-based Explanations with Adversarial Attacks for Respiratory
Sound Analysis [15.983890739091159]
We develop a unified example-based explanation method for selecting both representative data (prototypes) and outliers (criticisms)
In particular, we propose a novel application of adversarial attacks to generate an explanation spectrum of data instances via an iterative fast gradient sign method.
arXiv Detail & Related papers (2022-03-30T08:28:48Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Fairness-aware Summarization for Justified Decision-Making [16.47665757950391]
We focus on the problem of (un)fairness in the justification of the text-based neural models.
We propose a fairness-aware summarization mechanism to detect and counteract the bias in such models.
arXiv Detail & Related papers (2021-07-13T17:04:10Z) - Understanding Instance-based Interpretability of Variational
Auto-Encoders [24.493721984271566]
We investigate influence functions for a class of deep generative models called variational auto-encoders (VAE)
We then introduce VAE-TracIn, a computationally efficient and theoretically sound solution based on Pruthi et al.
We evaluate VAE-TracIn on several real world datasets with extensive quantitative and qualitative analysis.
arXiv Detail & Related papers (2021-05-29T04:03:09Z) - Paired Examples as Indirect Supervision in Latent Decision Models [109.76417071249945]
We introduce a way to leverage paired examples that provide stronger cues for learning latent decisions.
We apply our method to improve compositional question answering using neural module networks on the DROP dataset.
arXiv Detail & Related papers (2021-04-05T03:58:30Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.