論文の概要: PEACE: Cross-Platform Hate Speech Detection- A Causality-guided
Framework
- arxiv url: http://arxiv.org/abs/2306.08804v2
- Date: Sun, 8 Oct 2023 21:44:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 08:49:59.604580
- Title: PEACE: Cross-Platform Hate Speech Detection- A Causality-guided
Framework
- Title(参考訳): PEACE:多言語Hate音声検出-因果誘導フレームワーク
- Authors: Paras Sheth, Tharindu Kumarage, Raha Moraffah, Aman Chadha, and Huan
Liu
- Abstract要約: ヘイトスピーチ検出(Hate speech detection)とは、宗教、性別、性的指向、その他の特徴に基づいて個人または集団を軽蔑することを目的としたヘイトフルコンテンツを検出するタスクである。
本稿では,2つの本質的な因果的手がかりをヘイトフルコンテンツで識別し,活用する因果性誘導型フレームワークPEACEを提案する。
- 参考スコア(独自算出の注目度): 14.437386966111719
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hate speech detection refers to the task of detecting hateful content that
aims at denigrating an individual or a group based on their religion, gender,
sexual orientation, or other characteristics. Due to the different policies of
the platforms, different groups of people express hate in different ways.
Furthermore, due to the lack of labeled data in some platforms it becomes
challenging to build hate speech detection models. To this end, we revisit if
we can learn a generalizable hate speech detection model for the cross platform
setting, where we train the model on the data from one (source) platform and
generalize the model across multiple (target) platforms. Existing
generalization models rely on linguistic cues or auxiliary information, making
them biased towards certain tags or certain kinds of words (e.g., abusive
words) on the source platform and thus not applicable to the target platforms.
Inspired by social and psychological theories, we endeavor to explore if there
exist inherent causal cues that can be leveraged to learn generalizable
representations for detecting hate speech across these distribution shifts. To
this end, we propose a causality-guided framework, PEACE, that identifies and
leverages two intrinsic causal cues omnipresent in hateful content: the overall
sentiment and the aggression in the text. We conduct extensive experiments
across multiple platforms (representing the distribution shift) showing if
causal cues can help cross-platform generalization.
- Abstract(参考訳): ヘイトスピーチ検出(Hate speech detection)とは、宗教、性別、性的指向、その他の特徴に基づいて個人や集団を軽蔑することを目的とした、憎悪のあるコンテンツを検出するタスクである。
プラットフォームの異なるポリシーのため、さまざまなグループがさまざまな方法で憎しみを表明しています。
さらに,一部のプラットフォームにラベル付きデータがないため,ヘイトスピーチ検出モデルの構築が困難になる。
この目的のために、クロスプラットフォーム設定のための一般化可能なヘイトスピーチ検出モデルを学ぶことができ、そこで、1つの(ソース)プラットフォームからデータ上のモデルをトレーニングし、複数の(ターゲット)プラットフォームにまたがってモデルを一般化する。
既存の一般化モデルは言語的手がかりや補助情報に依存しており、ソースプラットフォーム上の特定のタグや特定の種類の単語(例えば乱用語)に偏り、したがってターゲットプラットフォームには適用されない。
社会的・心理学的理論に着想を得た我々は、これらの分布シフトを通してヘイトスピーチを検出するための一般化された表現を学ぶために活用できる固有の因果的手がかりが存在するかどうかを探求する。
この目的のために我々は,憎悪コンテンツに普遍的に現れる2つの内在的因果的手がかりを識別し,活用する因果関係に基づく枠組み「平和」を提案する。
複数のプラットフォーム(分散シフトを示す)で広範な実験を行い、クロスプラットフォームの一般化に因果的手がかりが役立つかどうかを示します。
関連論文リスト
- Towards Interpretable Hate Speech Detection using Large Language Model-extracted Rationales [15.458557611029518]
ソーシャルメディアプラットフォームは、ユーザーが対人的な議論を行い、意見を述べるための重要な場である。
ヘイトスピーチのインスタンスを自動的に識別し、フラグを付ける必要がある。
本稿では,現在最先端の大規模言語モデル (LLM) を用いて,入力テキストから有理形の特徴を抽出することを提案する。
論文 参考訳(メタデータ) (2024-03-19T03:22:35Z) - SADAS: A Dialogue Assistant System Towards Remediating Norm Violations
in Bilingual Socio-Cultural Conversations [56.31816995795216]
SADAS(Socially-Aware Dialogue Assistant System)は、会話が敬意と理解で広がることを保証するためのシステムである。
本システムの新しいアーキテクチャは,(1)対話に存在する規範のカテゴリを特定すること,(2)潜在的な規範違反を検出すること,(3)違反の深刻さを評価すること,(4)違反の是正を目的とした対策を実施すること,を含む。
論文 参考訳(メタデータ) (2024-01-29T08:54:21Z) - Aligning and Prompting Everything All at Once for Universal Visual
Perception [79.96124061108728]
APEは、さまざまなタスクを実行するために、すべてのことを一度に調整し、促す、普遍的な視覚知覚モデルである。
APEは、言語誘導接地をオープン語彙検出として再構成することで、検出と接地の収束を推し進める。
160以上のデータセットの実験では、APEが最先端のモデルより優れていることが示されている。
論文 参考訳(メタデータ) (2023-12-04T18:59:50Z) - Causality Guided Disentanglement for Cross-Platform Hate Speech
Detection [15.489092194564149]
ソーシャルメディアプラットフォームはオープンな言論を促進する価値があるにもかかわらず、しばしば有害なコンテンツを広めるために利用される。
本研究では,あるプラットフォームのデータに基づいて学習し,複数のプラットフォームに一般化可能な,クロスプラットフォームのヘイトスピーチ検出モデルを提案する。
4つのプラットフォームにわたる実験は、一般化されたヘイトスピーチを検出する既存の最先端手法と比較して、モデルの有効性が向上していることを強調した。
論文 参考訳(メタデータ) (2023-08-03T23:39:03Z) - How to Solve Few-Shot Abusive Content Detection Using the Data We Actually Have [58.23138483086277]
この作業では、すでに持っているデータセットを活用し、虐待的な言語検出に関連する幅広いタスクをカバーしています。
私たちのゴールは、ターゲットドメインのトレーニング例を少しだけ使用して、新しいターゲットラベルセットや/または言語のために、安価にモデルを構築することです。
実験の結果、すでに存在するデータセットと、対象タスクのほんの数ショットしか使用していないモデルの性能が、モノリンガル言語と言語間で改善されていることがわかった。
論文 参考訳(メタデータ) (2023-05-23T14:04:12Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
Google JigsawのAspective APIの次期バージョンの基礎を提示する。
このアプローチの中心は、単一の多言語トークンフリーなCharformerモデルである。
静的な語彙を強制することで、さまざまな設定で柔軟性が得られます。
論文 参考訳(メタデータ) (2022-02-22T20:55:31Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Latent Hatred: A Benchmark for Understanding Implicit Hate Speech [22.420275418616242]
この研究は、暗黙のヘイトスピーチの理論的に正当化された分類法と、各メッセージにきめ細かいラベルを付けたベンチマークコーパスを導入している。
本稿では、同時代のベースラインを用いて、暗黙のヘイトスピーチを検出し、説明するためにデータセットを体系的に分析する。
論文 参考訳(メタデータ) (2021-09-11T16:52:56Z) - Leveraging cross-platform data to improve automated hate speech
detection [0.0]
ヘイトスピーチ検出のための既存のアプローチは、単一のソーシャルメディアプラットフォームを独立して重視している。
本稿では,異なるプラットフォームからの複数のデータセットと分類モデルを活用するヘイトスピーチを検出するための,クロスプラットフォームアプローチを提案する。
このアプローチが既存のモデルより優れていることを実証し、新しいソーシャルメディアプラットフォームからのメッセージでテストすると、優れたパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2021-02-09T15:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。