Learning State-Augmented Policies for Information Routing in
Communication Networks
- URL: http://arxiv.org/abs/2310.00248v2
- Date: Mon, 23 Oct 2023 00:39:58 GMT
- Title: Learning State-Augmented Policies for Information Routing in
Communication Networks
- Authors: Sourajit Das, Navid NaderiAlizadeh, Alejandro Ribeiro
- Abstract summary: We develop a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures.
We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies.
In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms.
- Score: 92.59624401684083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper examines the problem of information routing in a large-scale
communication network, which can be formulated as a constrained statistical
learning problem having access to only local information. We delineate a novel
State Augmentation (SA) strategy to maximize the aggregate information at
source nodes using graph neural network (GNN) architectures, by deploying graph
convolutions over the topological links of the communication network. The
proposed technique leverages only the local information available at each node
and efficiently routes desired information to the destination nodes. We
leverage an unsupervised learning procedure to convert the output of the GNN
architecture to optimal information routing strategies. In the experiments, we
perform the evaluation on real-time network topologies to validate our
algorithms. Numerical simulations depict the improved performance of the
proposed method in training a GNN parameterization as compared to baseline
algorithms.
Related papers
- Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
This paper studies the problem of learning message propagation strategies for graph neural networks (GNNs)
We introduce the optimal propagation steps as latent variables to help find the maximum-likelihood estimation of the GNN parameters.
Our proposed framework can effectively learn personalized and interpretable propagate strategies of messages in GNNs.
arXiv Detail & Related papers (2023-10-01T15:09:59Z) - Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach [36.32772317151467]
Deep learning has been successfully adopted in mobile edge computing (MEC) to optimize task offloading and resource allocation.
The dynamics of edge networks raise two challenges in neural network (NN)-based optimization methods: low scalability and high training costs.
In this paper, a novel link-output GNN (LOGNN)-based resource management approach is proposed to flexibly optimize the resource allocation in MEC.
arXiv Detail & Related papers (2023-06-15T08:21:41Z) - Packet Routing with Graph Attention Multi-agent Reinforcement Learning [4.78921052969006]
We develop a model-free and data-driven routing strategy by leveraging reinforcement learning (RL)
Considering the graph nature of the network topology, we design a multi-agent RL framework in combination with Graph Neural Network (GNN)
arXiv Detail & Related papers (2021-07-28T06:20:34Z) - GDDR: GNN-based Data-Driven Routing [0.0]
We show that an approach using Graph Neural Networks (GNNs) performs at least as well as previous work using Multilayer Perceptron architectures.
GNNs have the added benefit that they allow for the generalisation of trained agents to different network topologies with no extra work.
arXiv Detail & Related papers (2021-04-20T12:12:17Z) - Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks [122.42812336946756]
We design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs)
We capture the asynchrony by modeling the activation pattern as a characteristic of each node and train a policy-based resource allocation method.
arXiv Detail & Related papers (2020-11-05T03:38:36Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
Ultra-reliable and low-latency communications (URLLC) will be central for the development of various emerging mission-critical applications.
Deep learning algorithms have been considered as promising ways of developing enabling technologies for URLLC in future 6G networks.
This tutorial illustrates how domain knowledge can be integrated into different kinds of deep learning algorithms for URLLC.
arXiv Detail & Related papers (2020-09-13T14:53:01Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.