論文の概要: An Efficient and Multi-private Key Secure Aggregation for Federated Learning
- arxiv url: http://arxiv.org/abs/2306.08970v3
- Date: Fri, 31 May 2024 07:29:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 20:51:10.848782
- Title: An Efficient and Multi-private Key Secure Aggregation for Federated Learning
- Title(参考訳): フェデレートラーニングのための効率的かつ多自由な鍵セキュアアグリゲーション
- Authors: Xue Yang, Zifeng Liu, Xiaohu Tang, Rongxing Lu, Bo Liu,
- Abstract要約: フェデレート学習のための効率的かつ多目的な鍵セキュアアグリゲーション手法を提案する。
具体的には、変種ElGamal暗号を巧みに修正し、同型加算演算を実現する。
高次元深層モデルパラメータに対しては,多次元データを1次元に圧縮する超増進シーケンスを導入する。
- 参考スコア(独自算出の注目度): 41.29971745967693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the emergence of privacy leaks in federated learning, secure aggregation protocols that mainly adopt either homomorphic encryption or threshold secret sharing have been widely developed for federated learning to protect the privacy of the local training data of each client. However, these existing protocols suffer from many shortcomings, such as the dependence on a trusted third party, the vulnerability to clients being corrupted, low efficiency, the trade-off between security and fault tolerance, etc. To solve these disadvantages, we propose an efficient and multi-private key secure aggregation scheme for federated learning. Specifically, we skillfully modify the variant ElGamal encryption technique to achieve homomorphic addition operation, which has two important advantages: 1) The server and each client can freely select public and private keys without introducing a trust third party and 2) Compared to the variant ElGamal encryption, the plaintext space is relatively large, which is more suitable for the deep model. Besides, for the high dimensional deep model parameter, we introduce a super-increasing sequence to compress multi-dimensional data into 1-D, which can greatly reduce encryption and decryption times as well as communication for ciphertext transmission. Detailed security analyses show that our proposed scheme achieves the semantic security of both individual local gradients and the aggregated result while achieving optimal robustness in tolerating both client collusion and dropped clients. Extensive simulations demonstrate that the accuracy of our scheme is almost the same as the non-private approach, while the efficiency of our scheme is much better than the state-of-the-art homomorphic encryption-based secure aggregation schemes. More importantly, the efficiency advantages of our scheme will become increasingly prominent as the number of model parameters increases.
- Abstract(参考訳): フェデレート学習におけるプライバシリークの出現に伴い、各クライアントのローカルトレーニングデータのプライバシを保護するために、同型暗号化またはしきい値秘密共有を主体とするセキュアアグリゲーションプロトコルが広く開発されている。
しかし、これらの既存のプロトコルは、信頼できるサードパーティへの依存、クライアントに対する脆弱性の破損、低効率、セキュリティとフォールトトレランスの間のトレードオフなど、多くの欠点に悩まされている。
これらの欠点を解決するために,フェデレート学習のための効率的かつ多目的な鍵セキュアアグリゲーション方式を提案する。
具体的には、変種ElGamal暗号を巧みに修正し、同型加算演算を実現する。
1) サーバ及び各クライアントは、信頼できる第三者を導入することなく、公開鍵及びプライベート鍵を自由に選択することができる。
2) 変種ElGamal暗号と比較すると, 平文空間は比較的大きく, 深部モデルに適している。
さらに,高次元深層モデルパラメータに対して,多次元データを1次元に圧縮する超増進シーケンスを導入する。
詳細なセキュリティ分析の結果,提案手法は個々の局所勾配と集約結果の両方のセマンティック・セキュリティを実現するとともに,クライアントの共謀とドロップクライアントの許容に最適なロバスト性を実現する。
大規模なシミュレーションにより,提案手法の精度は非私的手法とほぼ同じであるが,提案手法の効率は最先端の同型暗号ベースのセキュアアグリゲーション方式よりも優れていることが示された。
さらに重要なことに、モデルパラメータの数が増加するにつれて、我々のスキームの効率性はますます顕著になる。
関連論文リスト
- PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Privacy-Preserving, Dropout-Resilient Aggregation in Decentralized Learning [3.9166000694570076]
分散学習(DL)は、集中集約なしでクライアントにトレーニングを分散することで、機械学習の新たなパラダイムを提供する。
DLのピアツーピアモデルは、推論攻撃やプライバシリークを防ぐための課題を提起する。
本研究は,プライバシ保護DLのための3つの秘密共有型ドロップアウトレジリエンスアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-27T19:17:02Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
本稿では, 3次圧縮機と多数決機構を組み合わせて, 差分プライバシー, 勾配圧縮, ビザンチンレジリエンスを同時に実現するternaryVoteを提案する。
提案アルゴリズムのF差分プライバシー(DP)とビザンチンレジリエンスのレンズによるプライバシー保証を理論的に定量化する。
論文 参考訳(メタデータ) (2024-02-16T16:41:14Z) - FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving
Federated Learning with Byzantine Users [13.924829298309415]
従来の機械学習パラダイムにおけるデータプライバシの問題を軽減するために、フェデレートラーニング(FL)技術が開発された。
次世代のFLアーキテクチャでは、モデル更新をサーバから保護するための暗号化と匿名化技術が提案されている。
本稿では,完全同型暗号(FHE)に基づく新しいFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T11:20:00Z) - When approximate design for fast homomorphic computation provides
differential privacy guarantees [0.08399688944263842]
差分プライバシー(DP)と暗号プリミティブは、プライバシー攻撃に対する一般的な対策である。
本稿では,argmax演算子に対する確率近似アルゴリズム ShiELD を設計する。
たとえShielDが他のアプリケーションを持つことができたとしても、私たちは1つの設定に集中し、SPEEDコラボレーティブトレーニングフレームワークにシームレスに統合します。
論文 参考訳(メタデータ) (2023-04-06T09:38:01Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Efficient Sparse Secure Aggregation for Federated Learning [0.20052993723676896]
我々は,圧縮に基づくフェデレーション手法を付加的な秘密共有に適用し,効率的なセキュアなアグリゲーションプロトコルを実現する。
悪意のある敵に対するプライバシーの証明と、半正直な設定でその正しさを証明します。
セキュアアグリゲーションに関する従来の研究と比較すると、我々のプロトコルは通信コストが低く、同じ精度で適用可能なコストがかかる。
論文 参考訳(メタデータ) (2020-07-29T14:28:30Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。