論文の概要: Probabilistic Learning of Multivariate Time Series with Temporal Irregularity
- arxiv url: http://arxiv.org/abs/2306.09147v3
- Date: Sat, 15 Feb 2025 10:15:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:05:50.911139
- Title: Probabilistic Learning of Multivariate Time Series with Temporal Irregularity
- Title(参考訳): 時間的不規則性をもつ多変量時系列の確率論的学習
- Authors: Yijun Li, Cheuk Hang Leung, Qi Wu,
- Abstract要約: 実世界の時系列はしばしば、一様間隔や不整合変数を含む時間的不規則に悩まされる。
本稿では,変数の連立分布を任意の連続点で捉えながら,時間的不規則性をモデル化するエンドツーエンドフレームワークを提案する。
- 参考スコア(独自算出の注目度): 21.361823581838355
- License:
- Abstract: Probabilistic forecasting of multivariate time series is essential for various downstream tasks. Most existing approaches rely on the sequences being uniformly spaced and aligned across all variables. However, real-world multivariate time series often suffer from temporal irregularities, including nonuniform intervals and misaligned variables, which pose significant challenges for accurate forecasting. To address these challenges, we propose an end-to-end framework that models temporal irregularities while capturing the joint distribution of variables at arbitrary continuous-time points. Specifically, we introduce a dynamic conditional continuous normalizing flow to model data distributions in a non-parametric manner, accommodating the complex, non-Gaussian characteristics commonly found in real-world datasets. Then, by leveraging a carefully factorized log-likelihood objective, our approach captures both temporal and cross-sectional dependencies efficiently. Extensive experiments on a range of real-world datasets demonstrate the superiority and adaptability of our method compared to existing approaches.
- Abstract(参考訳): 多変量時系列の確率的予測は、下流の様々なタスクに不可欠である。
既存のアプローチのほとんどは、すべての変数に対して一様に空間化され整列されたシーケンスに依存している。
しかし、実世界の多変量時系列は、不均一区間や不整合変数を含む時間的不規則性に悩まされることが多く、正確な予測には重大な課題が生じる。
これらの課題に対処するため、変数の連立分布を任意の連続点で捉えながら、時間的不規則性をモデル化するエンドツーエンドフレームワークを提案する。
具体的には、非パラメトリックな方法でモデルデータ分布に動的条件付き連続正規化フローを導入し、実世界のデータセットでよく見られる複雑な非ガウス的特徴を調節する。
そこで本手法では, 時間的および断面的両方の依存関係を効率的に把握する。
実世界のデータセットに対する大規模な実験は、既存の手法と比較して、我々の手法の優越性と適応性を実証している。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - GinAR: An End-To-End Multivariate Time Series Forecasting Model Suitable for Variable Missing [21.980379175333443]
本稿では,グラフ補間注意再帰ネットワーク(GinAR)を提案する。
GinARでは、2つの重要なコンポーネント、すなわち注意と適応グラフの畳み込みで構成されている。
5つの実世界のデータセットで実施された実験では、GinARは11のSOTAベースラインより優れており、90%の変数が欠落している場合でも、すべての変数の将来の値を正確に予測できる。
論文 参考訳(メタデータ) (2024-05-18T16:42:44Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
本研究では,各サンプルに対して総合的な時間的相互作用特徴学習を実現するためのトランスフォーマーベースのエンコーダを提案する。
実世界の3つのデータセットについて広範な実験を行い、提案したCoFormerが既存の手法を大幅に上回っていることを検証した。
論文 参考訳(メタデータ) (2023-10-17T06:29:09Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
時系列予測は科学的・工学的な問題の基本である。
深層学習法はこの問題に適している。
多くの実世界のデータセットにおける標準メトリクスの最先端よりも改善されていることを示す。
論文 参考訳(メタデータ) (2020-02-14T16:16:51Z) - Variational Conditional Dependence Hidden Markov Models for
Skeleton-Based Action Recognition [7.9603223299524535]
本稿では、時間変化の時間依存性パターンをキャプチャする問題に対処するために、従来の逐次モデリング手法を再検討する。
我々は、過去のフレームへの依存を動的に推定するHMMの異なる定式化を提案する。
フォワード・バックワード・アルゴリズムに基づく抽出可能な推論アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-13T23:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。