論文の概要: Zero-Shot Anomaly Detection with Pre-trained Segmentation Models
- arxiv url: http://arxiv.org/abs/2306.09269v1
- Date: Thu, 15 Jun 2023 16:43:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 13:46:36.775762
- Title: Zero-Shot Anomaly Detection with Pre-trained Segmentation Models
- Title(参考訳): 事前訓練セグメンテーションモデルによるゼロショット異常検出
- Authors: Matthew Baugh, James Batten, Johanna P. M\"uller, Bernhard Kainz
- Abstract要約: 本稿では,視覚異常・ノベルティ検出(VAND)2023チャレンジのゼロショットトラックについて概説する。
WINCLIPフレームワークの性能に基づいて、ゼロショットセグメンテーションモデルを統合することにより、システムのローカライゼーション能力を向上することを目指している。
パイプラインは外部データや情報を必要としないため、新たなデータセットに直接適用することが可能です。
- 参考スコア(独自算出の注目度): 2.9322869014189985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This technical report outlines our submission to the zero-shot track of the
Visual Anomaly and Novelty Detection (VAND) 2023 Challenge. Building on the
performance of the WINCLIP framework, we aim to enhance the system's
localization capabilities by integrating zero-shot segmentation models. In
addition, we perform foreground instance segmentation which enables the model
to focus on the relevant parts of the image, thus allowing the models to better
identify small or subtle deviations. Our pipeline requires no external data or
information, allowing for it to be directly applied to new datasets. Our team
(Variance Vigilance Vanguard) ranked third in the zero-shot track of the VAND
challenge, and achieve an average F1-max score of 81.5/24.2 at a sample/pixel
level on the VisA dataset.
- Abstract(参考訳): 本報告では,視覚異常検出(vand)2023チャレンジのゼロショットトラックへの提案について概説する。
WINCLIPフレームワークの性能に基づいて、ゼロショットセグメンテーションモデルを統合することにより、システムのローカライゼーション能力を向上することを目指している。
さらに、前景インスタンスのセグメンテーションを行い、モデルが画像の関連部分に集中できるようにし、モデルがより小さく微妙な偏差を識別できるようにする。
パイプラインは外部データや情報を必要としないため、新たなデータセットに直接適用することが可能です。
我々のチーム(Variance Vigilance Vanguard)は、VANDチャレンジのゼロショットトラックで3位となり、VisAデータセットのサンプル/ピクセルレベルで平均F1-maxスコア81.5/24.2を達成した。
関連論文リスト
- Enabling Small Models for Zero-Shot Classification through Model Label Learning [50.68074833512999]
モデルと機能の間のギャップを埋める新しいパラダイムであるモデルラベル学習(MLL)を導入する。
7つの実世界のデータセットの実験により、MLLの有効性と効率が検証された。
論文 参考訳(メタデータ) (2024-08-21T09:08:26Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance [68.18779562801762]
マルチモーダルモデルは、下流の"ゼロショット"のパフォーマンスを線形改善するために、指数関数的に多くのデータを必要とする。
本研究は,大規模な訓練パラダイムの下での「ゼロショット」一般化能力の鍵となる訓練データに対する指数関数的要求を明らかにする。
論文 参考訳(メタデータ) (2024-04-04T17:58:02Z) - Small, Versatile and Mighty: A Range-View Perception Framework [13.85089181673372]
本稿では,LiDARデータの3次元検出のための新しいマルチタスクフレームワークを提案する。
我々のフレームワークは,LiDARポイントクラウドのためのセグメンテーションとパノプティクスセグメンテーションタスクを統合している。
レンジビューに基づく手法の中で,本モデルでは,Openデータセット上での新たな最先端検出性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T07:02:42Z) - ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs [36.749959232724514]
ZeroGは、クロスデータセットの一般化を可能にするために設計された新しいフレームワークである。
特徴の不整合、ラベル空間の整合、負の移動といった、固有の課題に対処する。
本稿では,抽出したサブグラフの意味情報と構造情報を豊かにするための,プロンプトベースのサブグラフサンプリングモジュールを提案する。
論文 参考訳(メタデータ) (2024-02-17T09:52:43Z) - Labeling Indoor Scenes with Fusion of Out-of-the-Box Perception Models [4.157013247909771]
ボトムアップセグメンテーション(SAM)、オブジェクト検出(Detic)、セマンティックセグメンテーション(MaskFormer)の最先端モデルを活用することを提案する。
室内環境におけるセマンティックセグメンテーションとオブジェクトインスタンス検出のための擬似ラベルを得るための,コスト効率の高いラベリング手法を開発することを目的とする。
提案手法の有効性を,Active VisionデータセットとADE20Kデータセットに示す。
論文 参考訳(メタデータ) (2023-11-17T21:58:26Z) - Optimization Efficient Open-World Visual Region Recognition [55.76437190434433]
RegionSpotは、ローカライゼーション基盤モデルから位置認識ローカライゼーション知識と、ViLモデルからのセマンティック情報を統合する。
オープンワールドオブジェクト認識の実験では、私たちのRereaSpotは、以前の代替よりも大きなパフォーマンス向上を実現しています。
論文 参考訳(メタデータ) (2023-11-02T16:31:49Z) - Lidar Panoptic Segmentation and Tracking without Bells and Whistles [48.078270195629415]
ライダーセグメンテーションと追跡のための検出中心ネットワークを提案する。
私たちのネットワークのコアコンポーネントの1つは、オブジェクトインスタンス検出ブランチです。
提案手法を複数の3D/4D LPSベンチマークで評価し,我々のモデルがオープンソースモデル間で新たな最先端性を確立することを確認した。
論文 参考訳(メタデータ) (2023-10-19T04:44:43Z) - Zero-Shot Refinement of Buildings' Segmentation Models using SAM [6.110856077714895]
本稿では,既存モデルの一般化損失に対処するために基礎モデルを適用する新しいアプローチを提案する。
いくつかのモデルの中で、私たちはSegment Anything Model(SAM)に焦点を当てています。
SAMは認識機能を提供しないので、ローカライズされたオブジェクトの分類とタグ付けに失敗する。
この新しいアプローチはSAMを認識能力で強化する。
論文 参考訳(メタデータ) (2023-10-03T07:19:59Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
我々は、既存の事前学習された視覚言語モデル(VL)を利用して意味的セグメンテーションモデルを訓練するZeroSegを提案する。
ZeroSegは、VLモデルで学んだ視覚概念をセグメントトークンの集合に蒸留することでこれを克服し、それぞれが対象画像の局所化領域を要約する。
提案手法は,他のゼロショットセグメンテーション法と比較して,同じトレーニングデータを用いた場合と比較して,最先端性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T08:47:06Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
セマンティックセグメンテーションデータセットを異なるドメインから統合する合成データセットであるMSegを提案する。
一般化と画素レベルのアノテーションのアライメントを調整し,2万枚以上のオブジェクトマスクを8万枚以上の画像で再現する。
MSegでトレーニングされたモデルは、WildDash-v1のリーダーボードで、トレーニング中にWildDashのデータに触れることなく、堅牢なセマンティックセグメンテーションのためにランク付けされている。
論文 参考訳(メタデータ) (2021-12-27T16:16:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。